
Proof-Carrying Smart Contracts

Thomas Dickerson1, Paul Gazzillo2, Maurice Herlihy1, Vikram Saraph1, and
Eric Koskinen2

1 Brown University
2 Stevens Institute of Technology

Abstract. We propose a way to reconcile the apparent contradiction be-
tween the immutability of idealized smart contracts and the real-world
need to update contracts to fix bugs and oversights. Our proposal is to
raise the contract’s level of abstraction to guarantee a specification ϕ
instead of a particular implementation of that specification. A combina-
tion of proof-carrying code and proof-aware consensus allows contract
implementations to be updated as needed, but so as to guarantee that ϕ
cannot be violated by any future upgrade.
We propose proof-carrying smart contracts (PCSCs), aiming to put for-
mal correctness proofs of smart contracts on the chain. Proofs of cor-
rectness for a contract can be checked by validators, who can enforce the
restriction that no update can violate ϕ. We discuss some architectural
and formal challenges, and include an example of how our approach could
address the well-known vulnerabilities in the ERC20 token standard.

1 Introduction

Motivation. The promise of smart contracts seems impossible to fulfill. In the-
ory, a smart contract is a transparent agreement, freely agreed upon by informed
parties. Irrevocable and immutable, it enforces itself without need for help from
humans and their civic institutions. In reality, an unhappy history of exploits,
theft, and fraud has established that people are bad at writing correct contracts,
and no better at detecting flaws in the contracts they agree to [17, 6, 18, 5].

The Solidity language and EVM bytecode permit contracts to call code at a
dynamic address. While intended to support legitimate functions such as sending
a payment to a user or contract, it allows the contract to implement the pointer
to implementation (or PIMPL) idiom. This idiom has one benefit: it provides a
path through which a buggy contract implementation might be patched. Even
though the code is immutable, the state managed by the code, including the
implementation pointer, is not. The danger, of course, is that a dishonest party
could use such dynamic control flow to make substantial changes to the contract’s
terms after it has been agreed upon.

We believe this dilemma can be avoided, or at least mitigated, by including
formal correctness proofs in the blockchain itself. Suppose we identify a property
ϕ critical to the contract’s integrity. If a flawed implementation C that formally
satisfies ϕ can only be replaced by an improved implementation C ′ such that

C ′ � ϕ, then all parties to the contract can be confident that ϕ will continue to
hold even as bugs (not covered by ϕ) are detected and patched.

The idea of mixing code and proofs goes back to Necula’s proof-carrying
code (PCC) [16]. The blockchain context, however, brings new challenges: What
format is needed for contracts’ specifications, and where are these specifications
stored? Which code needs to be verified? Who generates the proofs? How do
miners repeatedly validate the proofs? Here we sketch preliminary work on the
architectural and formal aspects of these challenges, illustrated by a running
example example based on the ERC20 token standard [21].

Overview. We believe that one may be able to adapt Necula’s PCC into a vari-
ation that we call proof-carrying smart contracts (PCSC). The idea is that a
contract’s API and specification ϕ are published to the blockchain. Any subse-
quent updates to the implementation C must be accompanied by a valid proof
that the specification is maintained: C � ϕ. Smart contracts are well-suited to
PCC, because a proof only needs to generated once by the contract owner, before
the implementation pointer is updated. Publishing the proof to the blockchain
makes it immutable, and the participants in the network only need check the
proof’s validity, a task that is far less computationally expensive than generating
the proof.

Blockchains and blockchain consensus require some changes to standard
PCC. In the original formulation, a code consumer specifies the specification, and
the code producer generates a proof that the policy is preserved by the remote
code. In the blockchain context, the smart contract owner is the code producer.
All validators and clients in the blockchain network are code consumers, since
smart contracts are replicated and rerun by all.

We exploit the immutability of blockchain to enable the the producer to pro-
vide the specification. Because this specification is published before any updates
to the contract implementation, code consumers can inspect it before transact-
ing with the contract. Immutability of blockchain data guarantees the policy
can never be weakened by the producer. The producer updates the implemen-
tation pointer with a special setter that must be accompanied by a valid proof.
Blockchain consensus ensures that updates by the contract writer preserve the
specification, as long as a majority of participants validate the proof.

Running Example. The ERC20 specification [21] defines a number of operations
intended to provide a standardized API for managing tradeable tokens on the
Ethereum platform [7]. Using ERC20, Alice may approve up to some number
n tokens, the allowance, to be transferred to Bob, and Bob may then execute
multiple transfer calls until all n have been transferred (or Alice reduces Bob’s
allowance). Here is an example, based on a simplified version of the ERC20 op-
erations, how one might use PCSC. In our simplified ERC20 specification, there
are only two accounts, from and to. Token transfers happen only unilaterally,
flowing from from to to.

There are several invariants linking operations i and i+ 1. First, we enforce
conservation of tokens, by defining

total supplyi = from balancei + to balancei (1)

and requiring
total supplyi+1 = total supplyi (2)

Second, we enforce the allowance limit:

∆i ≤ allowancei (3)

from balancei+1 = from balancei +∆i (4)

allowancei+1 = allowancei −∆i (5)

The näıve implementation in Fig 1 appears to respect both invariants. Un-
fortunately, these conditions, while necessary, are not sufficient to guarantee the
expected behavior. Alice, having initially approved an allowance of 100 tokens,
may later wish to decrease Bob’s allowance by calling approve(50). But if Bob
has already executed transfer(n) (for n > 50), Alice’s call has the unexpected
effect of increasing Bob’s total withdrawal.

This is essentially a data race: even though the EVM execution is single-
threaded, transactions are submitted in parallel, and miners may reorder and
interleave those transactions arbitrarily.

Fig 2 is a version of approve that is safe from the data race. It forces the
sender to first set the allowance to 0 before updating3, effectively clearing the
allowance before setting a new one.

Contributions This paper makes make the following contributions:

– We propose proof-carrying smart contracts (PCSC), a way to allow contracts
to be upgraded while ensuring that critical properties such as ϕ are preserved.

– We describe an architecture for PCSC, along with a discussion of needed
changes to the blockchain protocol and virtual machine (Section 2).

– A treatment of PCSC with specifications and proofs (Section 3).

This paper describes the ideas and insights motivating this work, which is still
in progress.

2 Realizing Proof-Carrying Smart Contracts

Adopting the language of PCC, the code producer is the contract writer, while
the consumers are all other participants in the blockchain network, miners, val-
idators, and the clients who issue transactions. The producer’s role is to create

3 This unfortunately restricts the possible valid semantics of the ERC20 implementa-
tion, later in the paper we will propose yet a 3rd implementation that is thread safe
without being subject to this restriction.

1 bool transfer(uint256 value) {

2 if (value <= allowed) {

3 from_balance -= value;

4 to_balance += value;

5 allowed -= value;

6 return true;

7 } else { return false; }

8 }

9 uint256 allowance() {

10 return allowed;

11 }

12 // vulnerable to a data race

13 bool approve(uint256 value) {

14 allowed = value;

15 return true;

16 }

Fig. 1. First version.

1 bool approve(uint256 value) {

2 // sender sets allowed to 0

3 // first to avoid data race

4 if (allowed == 0 && value > 0

5 ||allowed > 0 && value==0) {

6 allowed = value;

7 return true;

8 } else { return false; }

9 }

Fig. 2. Altered version of approve.

1 bool transfer(uint256 value) {

2 if (value <= allowed) {

3 from_balance -= value;

4 to_balance += value;

5 allowed -= value;

6 allowed_known = false;

7 return true;

8 } else { return false; }

9 }

10 uint256 allowance() {

11 if(caller == sender) {

12 allowed_known = true;

13 }

14 return allowed;

15 }

16 bool approve(uint256 value) {

17 // sender must have observed

allowance

18 if(allowed_known){

19 allowed = value;

20 return true;

21 } else { return false; }

22 }

Fig. 3. A safe version of approve, emu-
lating LL/SC for allowed.

A simplified example of an implementation of the ERC20 token standard where tokens
are sent with a two-step approve/transfer process.

the contract specification, consisting of an API and persistent contract state.
Unlike the original formulation of PCC, the specification is provided by the
producer, rather than the code consumer, along with the contract code. The
specification is provided as invariants on contract state as well as pre- and post-
conditions on the API interface methods. The parent part of a PCSC includes
the smart contract’s internal state, API methods, and formal specification. A
(successfully deployed) child part of the PCSC includes the source code for all
API methods, and a proof that the implementation satisfies the specification
(found in the corresponding parent).

We exploit the immutability of the blockchain to put executive control of
specification in the hands of consumers. In order to run smart contract trans-

actions, the contract is first appended to the chain. By requiring producers to
include the specification with the contract, it becomes part of the immutable
history of the chain, and can’t be modified, even if, for example, the contract
uses PIMPL and the implementation pointer changes to a new child contract.
Even though the consumers do not directly create the specification, a consumer
can inspect the specification and choose not to issue transactions on the contract
(though they must still process any transactions issued by other consumers, as
long as those transactions obey the specification).

We use the consensus mechanism of the blockchain to ensure that all updates
to the implementation of the smart contract preserve the original specification.
The producer specifies the fields of any child contract addresses. Any updates
to these fields must be accompanied by a proof that the new child contract
satisfies the original specification4. Participants trust that miners and validators
check the validity of proofs, just as they trust them not to zero out someone’s
token balance or put the contract in some other incorrect state. As with Bitcoin,
Ethereum, and other cryptocurrencies, as long as the majority of miners are
well-behaved, the contract updates will obey the specification.

Being a manifestation of PCC, the producer generates this proof off-the-chain
before making the update. The special setter function, allowing the child address
to be updated, uses a new bytecode operation, SAFEUPDATE, to check the pro-
vided proof preserves the specification. This ensures that miners and validators
can guarantee the new child contract is safe. The code for the child contract
must be available before the call to update the child address, so the parent must
publish the initial contract before issuing the update or prove an existing con-
tract satisfied the specification 5. This is safe because contract addresses are not
reassigned or unassigned due to the immutability of the blockchain.

As with other violations (out-of-gas, exceeded stack depth), an update to the
child address without a proof or with an invalid one is rejected with an exception.
The validation of the proof is far less computationally expensive than generating
the proof, enabling higher throughput for miners. But due to the added compu-
tational expense of validation, this new update operation will require more gas
than a typical store operation, perhaps proportional to the size of the proof.

Fig 4 illustrates the operation of proof-carrying smart contracts (PCSC). This
diagram assumes the producer has already published the parent contract (con-
taining the API and specification) as well as the candidate child contract’s code,
because these operations require no verification6. The producer first generates a
proof that the proposed child contract satisfied the invariants of the specification
(Step 1). This proof is packaged in an update transaction. The producer issues

4 For the purposes of this paper, we assume that the compiler is able to translate
proofs & invariants for the source language (e.g. Solidity) into proofs & invariants
for the host language (e.g. EVM bytecode).

5 A dummy contract which always terminates with an exception should vacuously
satisfy the specification, since, for example, under the Ethereum model of execution,
a contract could run out of gas and terminate at any point anyway

6 Generally-speaking, a parent contract can include arbitrary computation as long as
it is accompanied by its own proof.

1 Address
Proof

Update
MinerOwner 2 3 4New

Block

Validators

Fig. 4. The proof-carrying smart contract update operation.

the transaction to the blockchain network as usual for mining (Step 2). The
miner validates the proof against the code of the proposed child contract and
produces a new block containing the safe update (Step 3). If the proof is invalid,
the block will still record the attempted update as a transaction, but the safe
update will fail with an exception (and consume gas to disincentivize spurious
update requests). Finally, the rest of the blockchain network participants rerun
and validate the SAFEUPDATE (Step 4), as they would any other transaction.

2.1 Proof-Carrying Smart Contracts in Detail

Here we describe the details that a realization of the PCSC architecture entails
as well as discussion of generalizations to the architecture.

For many use cases, the parent contract will be nothing more than a thin
wrapper for calls to the child contract, and perform no computation other than
delegating its method calls. This means that proofs about the behavior of the
parent should typically be compact, and in this way the parent contract resem-
bles a formal specification for an API more than it does a fully-fledged smart
contract in its own right. Similarly, in the PIMPL pattern, the child contract will
typically have no persistent state of its own, operating instead on the state of the
parent. If some persistent state is present, e.g., caching of expensive math opera-
tions, in the child, it must be guaranteed to not affect the global state invariants
of the parent. This organization provides a clean separation of specification and
implementation. In the Ethereum virtual machine, the parent contract would
use a DELEGATECALL to the child contract, to ensure the contract operates on
the parent contract state.

In addition to declaring the API specification and persistent state, the parent
contract must declare the fields holding the addresses to the child contracts.
At the source-code level, this is achieved with a specially declared setter that
modifies the addresses. There are several options for ensuring the smart contract
cannot subvert proof validation by modifying a child contract address without
using the setter. For instance, runtime instrumentation of store operations can
ensure nothing touches a child address field. Additionally, the specification itself
can describe invariants about updates to the child address field. This latter
option is more amenable to source code analysis, rather than byte code analysis,
since we can prohibit arbitrary address computation.

We assume that the contract is not valid until provided an initial child con-
tract. Exception handling can be encoded in the specification to ensure correct
behavior if a client calls the parent contract before the initial update. As previ-

ously noted, the specification must always be robust to exceptions on platforms
where computations (of potentially unpredictable length) must be paid for in
advance (e.g. Ethereum). For our PIMPL-based examples, the parent has only
one child contract, but it is straightforward to extend this to multiple contracts.
The producer identifies the fields of each child contract and must provide proofs
when updating each. Again, in our examples, the parent makes no other calls to
contracts in our current formulation of simplified ERC20, but there is nothing
fundamental preventing multiple child contracts, so long as each child address
must be modified only with the safe update command that ensures a proof is
provided with the update. Similarly, the child contract may also call yet more
contracts, so long as proofs can be generated for their behavior.

As for altering the specification, a more flexible architecture can permit up-
dates to the specification by the contract writer. This would be possible as long
as the new specification implies the previous one, i.e., the specification can only
become more strict.

Lastly, it is not necessary that the smart contract specification be decided
by an individual. A common type of proposal and voting contract can be used
to distribute decision-making. Participants can propose and vote on the specifi-
cation, which is automatically installed by the voting contract. Furthermore, in
cases where a specification is for standard behavior that might be incorporated
into many contracts, we might imagine this proposal voting system be used to
produce standardized APIs. In this way, all blockchain participants are both pro-
ducers and consumers. Modifications to the specification, under the previously
stated implication rule, could be decided in a similar way.

There are two sorts of upgrades that our proof-carrying code scheme permits.
Minor upgrades can install a new child contract as long as the parent contract’s
safety policy is preserved. This is enforced by the the proof verification per-
formed by SAFEUPDATE. This permits safe upgrades without involving the slower
consensus process required to decide on the safety policy. The proof verification
makes this possible without having to trust the developer to maintain the safety
policy. This enables upgrades due to minor bugs not covered by the safety policy
or performance upgrades for instance. Major upgrades can alter the safety pol-
icy itself and require consensus among contract participants, e.g., via a proposal
and voting system. Like the minor upgrade, the child contract implementation
is replaced, but the new safety policy itself is also provided. The SAFEUPDATE

verifies the new child contract against the new policy. This requires the new child
contract author to generate a proof against the new safety policy.

The tradeoffs here are that maintainers can easily perform minor upgrades
whose safety is ensured by the original safety policy of the contract, lowering
obstacles to development. But the discovery of limitations of the safety policy
itself or a desire for organizational changes may warrant an upgrade to the policy
itself.

Let us assume the token contract Fig 1 has been initially installed with only
the invariants specified in Eqns 1–5, i.e., the safety policy only guarantees the
results of balance transfers, but does not account for the approve/transfer data

race A minor upgrade, such as eliminating a superfluous call to a safe math
library, can be performed, since it provably does not violate the safety policy.
At a later point, the organization discovers the data race and agrees to update
the safety policy to ensure future versions of the contract avoid it. This major
update is accompanied with a revised implementation of the contract that sat-
isfies the new invariants. Future contracts can then perform minor maintenance
or performance upgrades, like removing safe math calls, that continue to satisfy
the safety policy.

3 A Proposal for Specifications & Proofs

In recent years there has been substantial progress on formal verification of smart
contracts at both the high-level Solidity language [15, 19] as well as low-level
EVM bytecode [12, 11]. We aim to exploit this progress to enrich the blockchain
so that (i) smart contract APIs come with formal specifications of how they
should operate and (ii) proposed smart contract implementations can include
proofs that they satisfy those specifications. In this section, we discuss sketch
formal aspects, building on specification formats for objects [3, 2, 13, 8] and Nec-
ula’s proof-carrying code [16].

As discussed in the prior section, our PCSCs involve two components. The
parent part of a PCSC includes the smart contract’s internal state, API meth-
ods, and formal specification. A (successfully deployed) child part of the PCSC
includes the source code for all API methods, and a proof that the implemen-
tation satisfies the specification (found in the corresponding parent). We now
provide more detail on each of these, using the running example.

3.1 Parent: APIs & Specifications

State and Methods. The parent in a PCSC includes the state in the form of object
fields. It could include any of the smart contract language’s data-types (integers,
strings, Booleans, mappings, arrays, etc.). In the ERC20 running example, the
state of the PCSC includes:

balance : Addr 7→ N Relate addresses to balances
allowed : Addr 7→ (Addr 7→ N) How much others can transfer
child_ptr : Addr Pointer to implementation

We have already discussed the purpose of balance (a mapping from addresses to
tokens, represented as natural numbers) and allowed (a mapping from addresses
to address-token mappings). The final element of the state above is a critical
component of the PCSC parent. It is a pointer to the child part of the PCSC
which will contain the implementation (discussed below).

The parent in a PCSC also includes the interface, in the form of methods
that can be called by participants in the network. The bodies of these methods
simply relay the call, following the child_ptr to the corresponding method in
the child in the PCSC. Here is an example:

1 api_transfer(uint256 value, addr from) : bool {

2 return child_ptr.transfer(value, from);

3 }

This PIMPL paradigm means that the correctness of the parent contract follows
immediately from that of the child (discussed below), modulo initialization con-
cerns. In general, PCSCs needn’t necessarily follow the PIMPL paradigm and
it is easy to imagine other arrangements. For example, a contract may wish to
specialize dispatch, in which case all child contracts would need to be proved
correct. For simplicity, we focus on the common PIMPL case in the remainder
of this paper.

{I}
api_transfer(uint256 value, addr from) : bool
I ∧ Σa ‘balance(a) = Σa balance(a)
∧ ‘allowed(from)(me) ≥ value

⇒ allowed = ‘allowed[from,me 7→ ‘allowed(from)(me)− value] ∧ rv = true
∧ ‘allowed(from)(me) ≤ value⇒ allowed = ‘allowed ∧ rv = false


{I}
api_allowance(addr whom) : uint256

{I ∧ Σa ‘balance(a) = Σa balance(a) ∧ ρme(whom) = allowed(me)(whom)}

{I}
api_approve(uint256 value, addr whom) : bool
I ∧ Σa ‘balance(a) = Σa balance(a)
∧ (‘allowed(me)(whom) = ρme(whom)
⇒ allowed = ‘allowed[me, whom 7→ value] ∧ rv = true)

∧ (‘allowed(me)(whom) 6= ρme(whom)⇒ allowed = ‘allowed ∧ rv = false)


where I is the global invariant, defined to be:

∀a.balance(a) ≥ 0 ∧ ∀a b.allowed(a)(b) ≥ 0 ∧ ∀a.balance(a) ≥ Σb allowed(a)(b)

Fig. 5. Formal specification ϕ (in blue) for some of the ERC20 token standard.

Formal Specifications. The parent in the PCSC also contains the specification
ϕ of how the overall PCSC is intended to behave. As we will discuss later, a
candidate child implementation C is required to include a proof that C � ϕ.

Fig. 5 provides an example specification ϕ for a portion of the (simpli-
fied) ERC20 token standard that we are using as a running example. Each
method API includes standard Floyd-Hoare style pre-conditions as well as post-
conditions, depicted in blue. For a given method, say, api_transfer, the mean-
ing is that, if we assume that the associated pre-condition holds before api_-

transfer executes, then a correct implementation will ensure that the corre-
sponding post-condition must hold upon completion. (We assume that every
method will terminate, because the smart contract architecture enforces ter-
mination through “gas.”) Each pre/post-condition includes I which is a global
invariant on the state of the PCSC. I is defined at the bottom of Fig. 5. There are
three conditions given by I: that all balances are non-negative, all allowances
are non-negative, and that, for a given address a the sum of all outstanding
allowances is bounded by a’s balance (respectively). The latter condition corre-
sponds to Eqns. 3-5 in Section 1.

In the specification for api_transfer, me is used to denote the caller’s ad-
dress and notation ‘allowed indicates the value of allowed before the method
executed. The post-condition for api_transfer includes a stipulation that the
sum of all participants’ balances is unchanged (corresponding to Eqns. 1 and 2
in Sec. 1). We use a as a quantifier variable over each participant’s address. The
post-condition includes two further cases, depending on whether the transfer re-
quest is permitted by allowed. If it is permitted, then the value of allowed is the
same as ‘allowed, except that the appropriate slot is decremented. Otherwise,
allowed is unchanged. rv indicates the return value of the method.

Specification for approve . The published ERC20 standard has a well-publicized
flaw, demonstrated by the näıve implementation in Fig. 1, which is that calls to
approve a new allowance do not impose any particular semantic requirements
on the previous value. Thus an account holder may inspect the blockchain, and
see a current allowance value and attempt to reduce it at the same time that
another transaction is issued to transfer some of it. Since pending transactions
are subject to arbitrary reordering by the miner, the transfer may execute first,
and altered allowance may have the net effect of raising the total that can be
transferred.

Conceptually, we wish to add another invariant: the allowance may not be
altered unless the allowance is known when the transaction executes (this may be
different than the value it had when the transaction was issued). The implemen-
tation shown in Fig. 2 patches this vulnerability by requiring that a new positive
allowance can only be set if the allowance is currently being set to 0 (either by
transfers or by approves). This blocks the data race, but also forces the ac-
count holder to pay for unnecessary transactions when a competing transaction
is not pending.

Multiprocessor architectures address similar data race problems with atomic
instructions such as compare-and-swap. To fix the ERC20 API, however, it
is more convenient to mimic the functionality of load-linked (LL) and store-
conditional (SC) instructions. LL loads a value from memory, and SC writes a
new value to the same location, if and only if it has not been written since the
matching LL.

Our specification in Fig. 5 includes the requirement that allowance is known
at the time of approval, using a ghost variable. The specification for api_-

allowance uses ghost variable ρ in the post-condition. This variable tracks the
fact that the caller (me) has checked how much recipient whom is currently per-

mitted to transfer. ρme can become out-of-date if the recipient makes a call to
transfer, and this will be the saving grace in the specification of api_approve.
In the specification for api_approve, allowed is updated, approving a pending
recipient whom to receive value. The two cases depend on whether ghost vari-
able ρme(whom) is up-to-date, indicating that me is aware of how much has been
approved.

In the next subsection, we will discuss how the implementation using strategy
employed in Fig. 3 can be proved to satisfy this specification.

3.2 Child: Proposed Implementations & Proofs

Miners propose the child portion of a PCSC: an implementation C, coupled
with a proof that the implementation satisfies the specification ϕ housed in the
parent. We now discuss what the child portion of the PCSC entails.

Implementation C. The implementation C of each API method (transfer,
allowance, etc.) is housed in the child PCSC such that, if C can be shown
to satisfy ϕ, then the child will be installed and these implementations will be
accessed via child_ptr.transfer(), etc.

Proof that C � ϕ. How can we be 100% sure that this proposed implementation
in Fig. 3 operates correctly? The child portion of a PCSC includes a proof that
code C satisfies the corresponding parent’s specification ϕ.

The Floyd-Hoare style pre/post specifications shown above can be verified
to hold of an implementation using verification conditions as seen in tools such
as Spec# [3], Boogie [2], Dafny [13], Why3 [8], etc. Intuitively, the format of the
proofs are, for each line of each method, invariants that must hold at that line
(more precisely: the invariant comes just before or just after the line). Finding
these invariants is difficult (searching for a proof). Checking these invariants,
however, is much faster: a symbolic analysis can traverse the method, starting
by ensuring that the first invariant holds from the the pre-condition and effect
of the first line of code. When the analysis reaches the end of the method, it
checks that the post-condition is entailed by the penultimate invariant and last
line of code.

PCSCs allow us to prevent buggy implementations like approve in Fig. 1
from being accepted onto the blockchain, but permit correct implementations
like Fig. 3. There is no proof that Fig. 1 satisfies the specification in Fig. 5. On
the other hand, a proof can easily be given for Fig. 3, which is a simplified case
where there are only two participants and variable allowed_known is used to
ensure the correct behavior of approve.

3.3 Verification Tool Development

In our ongoing work, we are developing verification tools for PCSC, building on
recent works for verification of solidity [15, 19] and EVM [12, 11].

Ultimately, the proofs published to the blockchain need to be expressed in
terms of the bytecode, to avoid dependencies on a specific verified compiler.
Fortunately, others have developed formal semantics for EVM bytecode [12, 11].
Down the road, we plan to extend work on certified compilation [14] to translate
source-level correctness guarantees to bytecode guarantees. However, there are
already verification challenges at the source code level, being tackled by us and
others [15, 19].

4 Related Work

Ethereum’s [7] ERC20 token standard [21] is widely used as the basis for many
recent initial coin offerings. Vladimirov and Khovratovich [20] give a clear de-
scription of the ERC20 design flaw discussed here.

The notion that proofs should be included with code first appears in Nec-
ula’s seminal proof-carrying code paper [16]. As mentioned, we make use of the
functionality of the Why3 platform [4]. Hicks and Nettles [10] pioneered the idea
of using PCC for dynamic software updates.

There is other work that investigates vulnerabilities in smart contracts. For
example, Luu et al. [15] develop a software tool called Oyente, which detects
security bugs in Ethereum contracts. Atzei et al. [1] describe common pitfalls
that lead to security vulnerabilities, and demonstrate how they can be exploited.
Sergey and Hobor [17] analyze smart contract vulnerabilities by drawing com-
parisons between contract execution and concurrent shared-memory computing.
Grossman et al. [9] discuss a dynamic approach.

5 Conclusion and Future Work

This paper describes preliminary work attempting to reconcile the apparent
contradiction between the immutability of idealized smart contracts and the
real-world need to update contracts to fix bugs and oversights. Our proposed
solution is to raise the contract’s level of abstraction to guarantee an invariant
ϕ instead of a particular implementation of that invariant. A combination of
proof-carrying code and proof-aware consensus allows contract implementations
to be updated as needed, but so as to guarantee that ϕ cannot be violated by
any future upgrade.

Much remains to be done on proof-carrying smart contracts. The work re-
ported here is still in an early stage, and we are not yet far enough along to
report on progress or difficulties.

Future goals include formally modeling proof-carrying smart contracts and
creating an implementation as an extension of the Ethereum blockchain and vir-
tual machine. A formal specification will permit proofs of guarantees that proof-
carrying smart contracts provide. Additionally, we intend to investigate how
consensus integrates with these proofs and perhaps extend the model consensus
to include them. Extending smart contracts with specifications requires defining
extensions to the smart contract implementation language and the bytecode to

represent the specifications as well as mappings from source code to bytecode
specifications. For generating and validating proofs, we plan to use off-the-shelf
tools, such as Why3. Our language extensions and the proof tools need to be
integrated with the smart contract toolchain and virtual machine itself.

For implementation, we intend to extend the contract virtual machine with
new opcodes to add new contracts with specifications as well as update them
given a new proof. To enable this, we will extend the binary format of smart
contract to encode specifications and proofs. Using these changes in an existing
chain would require a hard fork to extend the binary format and virtual machine.
With proof-carrying smart contracts in hand, we will use them to improve the
ERC20 token standard, demonstrated with example implementations, and show
how contract writers can take advantage of these.

Proof-carrying smart contracts open up new research questions. For instance,
how do we integrate proofs into blockchain consensus and how do mining and
consensus mechanisms, such as proof-of-work and proof-of-stake, interact with
formal proofs? Formal verification enables trust for updates, but consensus mech-
anisms are still needed to agree on what the right specifications are. For instance,
contract participants can vote on changes to the specifications, but allow formal
verification to eliminate the need for voting on implementation changes.

The ability of formal verification to support trusted computing has the po-
tential to improve how consensus is achieved, and proof-carrying smart contracts
are an important step in integrating proofs with blockchain.

References

1. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart
contracts sok. In: Proceedings of the 6th International Conference on Principles
of Security and Trust - Volume 10204. pp. 164–186. Springer-Verlag New York,
Inc., New York, NY, USA (2017). https://doi.org/10.1007/978-3-662-54455-6 8,
https://doi.org/10.1007/978-3-662-54455-6_8

2. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: FMCO. vol. 5, pp. 364–
387. Springer (2005)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An
overview. In: International Workshop on Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices. pp. 49–69. Springer (2004)

4. Bobot, F., Fillitre, J.C., March, C., Melquiond, G., Paskevich, A.: The why3 plat-
form. http://why3.lri.fr/manual.pdf, accessed: 14 January 2018

5. Daian, P., Breidenbach, L.: Parity proposals potential problems. http://

hackingdistributed.com/2017/12/13/ether-resurrection/, retrieved 14 Jan
2018

6. DAO: The DAO smart contract, retrieved 8 February 2017
7. Ethereum: https://github.com/ethereum/, accessed: 14 January 2018
8. Filliâtre, J.C., Paskevich, A.: Why3: where programs meet provers. In: European

Symposium on Programming. pp. 125–128. Springer (2013)
9. Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sagiv,

M., Zohar, Y.: Online detection of effectively callback free objects with applications

to smart contracts. In: ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL) (2018)

10. Hicks, M., Nettles, S.: Dynamic software updating. ACM Trans. Program. Lang.
Syst. 27(6), 1049–1096 (Nov 2005). https://doi.org/10.1145/1108970.1108971,
http://doi.acm.org/10.1145/1108970.1108971

11. Hildenbrandt, E., Saxena, M., Zhu, X., Rodrigues, N., Daian, P., Guth, D., Rosu,
G.: Kevm: A complete semantics of the ethereum virtual machine. Tech. rep. (2017)

12. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.
In: International Conference on Financial Cryptography and Data Security. pp.
520–535. Springer (2017)

13. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: International Conference on Logic for Programming Artificial Intelligence and
Reasoning. pp. 348–370. Springer (2010)

14. Leroy, X., et al.: The compcert verified compiler. Documentation and user’s man-
ual. INRIA Paris-Rocquencourt (2012)

15. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. pp. 254–269. CCS ’16, ACM, New York, NY, USA
(2016). https://doi.org/10.1145/2976749.2978309, http://doi.acm.org/10.1145/
2976749.2978309

16. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. pp. 106–119. POPL ’97, ACM, New York, NY, USA (1997).
https://doi.org/10.1145/263699.263712, http://doi.acm.org/10.1145/263699.

263712

17. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. CoRR
abs/1702.05511 (2017), http://arxiv.org/abs/1702.05511

18. Sirer, E.G.: Parity’s Wallet Bug is not Alone. https://blogs.apache.org/

foundation/entry/apache-struts-statement-on-equifax (2017), [Online; ac-
cessed 05-Nov-2017]

19. various: Formal verification for solidity contracts. https://forum.ethereum.org/
discussion/3779/formal-verification-for-solidity-contracts, accessed: 14
July 2018

20. Vladimirov, M., Khovratovich, D.: Erc20 api: An attack vector on
approve/transferfrom methods. https://docs.google.com/document/

d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit#heading=h.

m9fhqynw2xvt, accessed: 14 January 2018
21. Wiki, E.: Erc20 token standard. https://theethereum.wiki/w/index.php/

ERC20_Token_Standard, accessed: 14 January 2018

