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ABSTRACT
Modern cryptocurrency systems, such as Ethereum, permit complex

financial transactions through scripts called smart contracts. These
smart contracts are executed many, many times, always without

real concurrency. First, all smart contracts are serially executed

by miners before appending them to the blockchain. Later, those

contracts are serially re-executed by validators to verify that the

smart contracts were executed correctly by miners.

Serial execution limits system throughput and fails to exploit to-

day’s concurrent multicore and cluster architectures. Nevertheless,

serial execution appears to be required: contracts share state, and

contract programming languages have a serial semantics.

This paper presents a novel way to permit miners and validators

to execute smart contracts in parallel, based on techniques adapted

from software transactional memory. Miners execute smart con-

tracts speculatively in parallel, allowing non-conflicting contracts

to proceed concurrently, and “discovering” a serializable concurrent

schedule for a block’s transactions, This schedule is captured and

encoded as a deterministic fork-join program used by validators

to re-execute the miner’s parallel schedule deterministically but

concurrently.

Smart contract benchmarks run on a JVM with ScalaSTM show

that a speedup of 1.33x can be obtained for miners and 1.69x for

validators with just three concurrent threads.

1 INTRODUCTION
Cryptocurrencies such as Bitcoin [20] or Ethereum [8] are very

much in the news. Each is an instance of a distributed ledger : a
publicly-readable tamper-proof record of a sequence of events. Sim-

plifying somewhat, early distributed ledgers, such as Bitcoin’s, work
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like this: clients send transactions1 tominers, who package the trans-
actions into blocks. Miners repeatedly propose new blocks to be ap-

plied to the ledger, and follow a global consensus protocol to agree

on which blocks are chosen. Each block contains a cryptographic

hash of the previous block, making it difficult to tamper with the

ledger. The resulting distributed data structure, called a blockchain,
defines the sequence of transactions that constitutes the distributed

ledger
2
.

Modern blockchain systems often interpose an additional soft-

ware layer between clients and the blockchain. Client requests are

directed to scripts, called smart contracts, that perform the logic

needed to provide a complex service, such as managing state, en-

forcing governance, or checking credentials. Smart contracts can

take many forms, but here we will use (a simplified form of) the

Ethereum model [8].

A smart contract resembles an object in a programming language.

It manages long-lived state, which is encoded in the blockchain.

The state is manipulated by a set of functions, analogous tomethods
in many programming languages. Functions can be called either

directly by clients or indirectly by other smart contracts. Smart

contract languages are typically Turing-complete. To ensure that

function calls terminate, the client is charged for each computa-

tional step in a function call. If the charge exceeds what the client

is willing to pay, the computation is terminated and rolled back.

When and where is smart contract code executed? There are

two distinct circumstances. Each smart contract is first executed

by one or more miners, nodes that repeatedly propose new blocks

to append to the blockchain. When a miner creates a block, it

selects a sequence of user requests and executes the associated

smart contract code for each Ethereum transaction in sequence,

transforming the old contract state into a new state. It then records

both the sequence of transactions and the new state in the block,

and proposes it for inclusion in the blockchain.

Later, when the block has been appended to the blockchain, each

smart contract is repeatedly re-executed by validators: nodes that
reconstruct (and check) the current blockchain state. As a validator

acquires each successive block, it replays each of the transactions’

contract codes to check that the block’s initial and final states match.

Each miner validates blocks proposed by other miners, and older

block are validated by newly-joined miners, or by clients querying

the contract state. Code executions for validation vastly exceed

code executions for mining.

1
Following blockchain terminology, a transaction is a payment or set of payments, not

an atomic unit of synchronization as in databases or transactional memory.

2
This description omits many important issues, such as incentives, forking, and fork

resolution.
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Existing smart contract designs limit throughput because they

admit no concurrency. When a miner creates a block, it assembles

a sequence of transactions, and computes a tentative new state

by executing those transactions’ smart contracts serially, in the

order they occur in the block. A miner cannot simply execute these

contracts in parallel, because they may perform conflicting accesses

to shared data, and an arbitrary interleaving could produce an

inconsistent final state. For Bitcoin transactions, it is easy to tell in

advance when two transaction conflict, because input and output

data are statically declared. For smart contracts, by contrast, it is

impossible to tell in advance whether two contract executions will

conflict, because the contract language is Turing-complete.

Miners are rewarded for each block they successfully append to

the blockchain, so they have a strong incentive to increase through-

put by parallelizing smart contract executions. We propose to allow

miners to execute contract codes in parallel by adapting techniques

from Software Transactional Memory (STM) [12]: treating each

invocation as a speculative atomic action. Data conflicts, detected

at run-time, are resolved by delaying or rolling back some conflict-

ing invocations. Treating smart contract invocations as speculative

atomic actions dynamically “discovers” a serializable concurrent
schedule, producing the same final state as a serial schedule where

the contract functions were executed in some one-at-a-time order.

But what about later validators? Existing STM systems are non-
deterministic: if a later validator simply mimics the miner by re-

running the same mix of speculative transactions, it may produce

a different serialization order and a different final state, causing

validation to fail incorrectly. Treating contract invocations as specu-

lative transactions improvesminers’ throughput, but fails to support

deterministic re-execution as required by validators.

Notice, however, that the miner has already “discovered” a se-

rializable concurrent schedule for those transactions. We propose

a novel scheme where the miner records that successful schedule,

along with the final state, allowing later validators to replay that

same schedule in a concurrent but deterministic way. Deterministic

replay avoids many of the the miner’s original synchronization

costs, such as conflict detection and roll-back. Over time, parallel

validation would be a significant benefit because validators perform

the vast majority of contract executions. Naturally, the validator

must be able to check that the proposed schedule really is serializ-

able.

This paper makes the following contributions.

• A way for miners to speculatively execute smart contracts

in parallel. We adapt techniques from transactional boost-
ing [11] to permit non-conflicting smart contracts to execute

concurrently.

• A way for miners to capture the resulting parallel execution

in the form of a fork-join [1] schedule to be executed by

validators, deterministically, verifiably, and in parallel.

• A prototype implementation, built on the Java virtual ma-

chine and ScalaSTM [21]. An evaluation using smart contract

examples drawn from the Solidity documentation yields an

overall speedup of 1.33x for miners, and 1.69x for validators

with three concurrent threads of execution.

1 contract Ballot {
2 mapping(address => Voter) public voters ;
3 // more state definitions
4 function vote( uint proposal ) {
5 Voter sender = voters [msg.sender];
6 if (sender .voted)
7 throw;
8 sender .voted = true ;
9 sender . vote = proposal ;
10 proposals[proposal ]. voteCount += sender.weight;
11 }
12 // more operation definitions
13 }

Figure 1: Part of the Ballot contract

2 BLOCKCHAINS AND SMART CONTRACTS
In Bitcoin and similar systems, transactions typically have a simple

structure, distributing the balances from a set of input accounts

to a set of newly-created output accounts. In Blockchains such

as Ethereum, however, each block also includes an explicit state
capturing the cumulative effect of transactions in prior blocks. A

Transaction is expressed as executable code, often called a smart
contract, that modifies that state. Ethereum blocks thus contain

both transactions’ smart contracts and the final state produced by

executing those contacts.

The contracts themselves are stored in the blockchain as byte-

code instructions for the Ethereum virtual machine (EVM). Several

higher-level languages exist for writing smart contracts. Here, we

describe smart contracts as expressed in the Solidity language [22].

Listing 1 is part of the source code for an example smart con-

tract that implements a ballot box [23]. The owner initializes the

contract with a list of proposals and gives the right to vote to a

set of Ethereum addresses. Voters cast their votes for a particu-

lar proposal, which they may do only once. Alternatively, voters

may delegate their vote. The contract keyword declares the smart

contract (Line 1).

The contract’s persistent state is recorded in state variables. For
Ballot , the persistent state includes fields of scalar type such as the

owner (omitted for lack of space). State variables such as voters
(declared on Line 2) can also use the built-in Solidity typemapping
which, in this case, associates each voter’s addresswith a Voter data
structure (declaration omitted for brevity). The keys in this mapping

are of built-in type address, which uniquely identifies Ethereum

accounts (clients or other contracts). These state variables are the

persistent state of the contract.

Line 4 declares contract function, vote, to cast a vote for the given
proposal. Within a function there are transient memory and stack
areas such as sender. The function vote first recovers the Voter
data from the contract’s state by indexing into the voters mapping

using the sender’s addressmsg.sender. Themsg variable is a global
variable containing data about the contract’s current invocation.

Next, the sender . vote flag is checked to prevent multiple votes.

Note that sequential execution is critical: if this code were naïvely



run in parallel, it would be vulnerable to a race condition permitting

double voting. Ethereum contract functions can be aborted at any

time via throw, as seen here when a voter is detected attempting

to vote twice. The throw statement causes the contract’s transient

state and tentative storage changes to be discarded. Finally, this

Ballot contract also provides functions to register voters, delegate

one’s vote, and compute the winning proposal. The complete Ballot

example is available elsewhere
3
.

Execution Model: Miners and Validators. When a miner pre-

pares a block for inclusion in the blockchain, it starts with the

ledger state as of the chain’s most recent block. The miner selects a

sequence of new transactions, records them in the new block, and

executes them, one at a time, to compute the new block’s state. The

miner then participates in a consensus protocol to decide whether

this new block will be appended to the blockchain.

To ensure that each transaction terminates in a reasonable num-

ber of steps, each call to contract bytecode comes with an explicit

limit on the number of virtual machine steps that a call can take.

(In Ethereum, these steps are measured in “gas” and clients pay a

fee to the miner that successfully appends that transaction’s block

to the blockchain.)

After a block has been successfully appended to the blockchain,

that block’s transactions are sequentially re-executed by every node
in the network to check that the block’s state transition was com-

puted honestly and correctly. (Smart contract transactions are de-

terministic, so each re-execution yields the same results as the

original.) These validator nodes do not receive fees for re-execution.
To summarize, a transaction is executed in two contexts: once by

miners before attempting to append a block to the blockchain, and

many times afterward by validators checking that each block in the

blockchain is honest. In both contexts, each block’s transactions

are executed sequentially in block order.

3 SPECULATIVE SMART CONTRACTS
This section discusses how miners can execute contract codes con-

currently. Concurrency for validators is addressed in the next sec-

tion.

Smart contract semantics is sequential: each miner has a single

thread of control that executes one EVM instruction at a time. The

miner executes each of the block’s contracts in sequence. One con-

tract can call another contract’s functions, causing control to pass

from the first contract code to the second, and back again. (Indeed,

misuse of this control structure has been the source of well-known

security breaches [6].) Clearly, even sequential smart contracts

must be written with care, and introducing explicit concurrency to

contract programming languages would only make the situation

worse. We conclude that concurrent smart contract executions must

be serializable: indistinguishable, except for execution time, from a

sequential execution.

There are several obstacles to running contracts in parallel. First,

smart contract codes read and modify shared storage, so it is essen-

tial to ensure that concurrent contract code executions do not result

in inconsistent storage states. Second, smart contract languages

3
http://solidity.readthedocs.io/en/develop/solidity-by-example.html

are Turing-complete, and therefore it is impossible in general to

determine statically whether contracts have data conflicts.

We propose that miners execute contract codes as speculative
actions. A miner schedules multiple concurrent contracts to run

in parallel. Contracts’ data structures are instrumented to detect

synchronization conflicts at run-time, in much the same way as

mechanisms like transactional boosting [11]. If one speculative

contract execution conflicts with another, the conflict is resolved

either by delaying one contract until the other completes, or by

rolling back and restarting one of the conflicting executions. When

a speculative action completes successfully, it is said to commit, and
otherwise it aborts.

Storage Operations. We assume that, as in Solidity, state vari-

ables are restricted to predefined types such as scalars, structures,

enumerations, arrays, and mappings. A storage operation is a prim-

itive operation on a state variable. For example, binding a key to

a value in a mapping, or reading from a variable or an array are

storage operations. Two storage operations commute if executing
them in either order yields the same result values and the same

storage state. For example, in the address-to-Voter Ballot mapping

in Listing 1, binding Alice’s address to a vote of 42 commutes with

binding Bob’s address to a vote of 17, but does not commute when

deleting Alice’s vote. An inverse for a storage operation is another

operation that undoes its effects. For example, the inverse of as-

signing to a variable is restoring its prior value, and the inverse

of adding a new key-value pair to a mapping is to remove that

binding, and so on. The virtual machine system can provide all

storage operations with inverses.

The virtual machine is in charge of managing concurrency for

state variables such as mappings and arrays. Speculation is con-

trolled by two run-time mechanisms, invisible to the programmer,

and managed by the virtual machine: abstract locks, and inverse
logs.

Each storage operation has an associated abstract lock. The rule

for assigning abstract locks to operations is simple: if two storage

operations map to distinct abstract locks, then they must commute.

Before a thread can execute a storage operation, it must acquire the

associated abstract lock. The thread is delayedwhile that lock is held

by another thread
4
. Once the lock is acquired, the thread records

an inverse operation in a log, and proceeds with the operation.

If the action commits, its abstract locks are released and its log

is discarded. If the action aborts, the inverse log is replayed, most

recent operation first, to undo the effects of that speculative action.

When the replay is complete, the action’s abstract locks are released.

The advantage of combining abstract locks with inverse logs is

that the virtual machine can support very fine-grained concurrency.

A more traditional implementation of speculative actions might

associate locks with memory regions such as cache lines or pages,

and keep track of old and versions of those regions for recovery.

Such a coarse-grained approach could lead to many false conflicts,

where operations that commute in a semantic sense are treated as

conflicting because they access overlapping memory regions. In

the next section, we will see how to use abstract locks to speed up

verifiers.

4
For ease of exposition, abstract locks are mutually exclusive, although it is not hard

to accommodate shared and exclusive modes.

http://solidity.readthedocs.io/en/develop/solidity-by-example.html


When one smart contract calls another, the run-time system

creates a nested speculative action, which can commit or abort

independently of its parent. A nested speculative action inherits

the abstract locks held by its parent, and it creates its own inverse

log. If the nested action commits, any abstract locks it acquired are

passed to its parent, and its inverse log is appended to its parent’s

log. If the nested action aborts, its inverse log is replayed to undo

its effects, and any abstract locks it acquired are released. Aborting

a child action does not abort the parent, but a child action’s effects

become permanent only when the parent commits. The abstract

locking mechanism also detects and resolves deadlocks, which are

expected to be rare.

The scheme described here is eager, acquiring locks, applying

operations, and recording inverses. An alternative lazy implemen-

tation could buffer changes to a contract’s storage, applying them

only on commit.

A miner’s incentive to perform speculative concurrent execution

is the possibility of increased throughput, and hence a competitive

advantage against other miners. Of course, the miner undertakes

a risk that synchronization conflicts among contracts will cause

some contracts to be rolled back and re-executed, possibly delaying

block construction, and forcing the miner to re-execute code not

compensated by client fees. Nevertheless, the experimental results

reported below suggest that even a small degree of concurrent

speculative execution pays off, even in the face of moderate data

conflicts.

4 CONCURRENT VALIDATION
The speculative techniques proposed above for miners are no help

for validators. Here is the problem: miners use speculation to dis-

cover a concurrent schedule for a block’s transactions, a schedule

equivalent to some sequential schedule, except faster. That sched-

ule is constructed non-deterministically, depending on the order

in which threads acquired abstract locks. To check that the block’s

miner was honest, validators need to reconstruct the same (or an

equivalent) schedule chosen by the miner.

Validators need a way to deterministically reproduce the miner’s

concurrent schedule. To this end, we extend abstract locks to track

dependencies, that is, who passed which abstract locks to whom.

Each speculative lock includes a use counter that keeps track of the

number of times it has been released by a committing action during

the construction of the current block. When a miner starts a block,

it sets these counters to zero.

When a speculative action commits, it increments the counters

for each of the locks it holds, and then it registers a lock profile with
the VM recording the abstract locks and their counter values.

When all the actions have committed, it is possible to reconstruct

their common schedule by comparing their lock profiles. For exam-

ple, consider three committed speculative actions, A, B, and C . If A
and B have no abstract locks in common, they can run concurrently.

If an abstract lock has counter value 1 in A’s profile and 2 in C’s
profile, then C must be scheduled after A.

A miner includes these profiles in the blockchain along with

usual information. From this profile information, validators can

construct a fork-join program that deterministically reproduces the

Algorithm 1 MineInParallel(T ) - Mine in parallel

Require: A set of contract transactions T
Ensure: A serial order S of transactions and a happens-before

graph H of the locking schedule

1: functionMineInParallel(B)
2: Initialize log L for recording locking operations

3: Execute all transactions t ∈ T in parallel, recording

locking activity in L
4: Generate happens-before graph H from L
5: Create the serial ordering S via a topological sort of H
6: return (S,H )
7: end function

Algorithm 2 ConstructValidator(S,H ) - Construct a parallel

validator

Require: The serial ordering S and happens-before graph H from

the miner

Ensure: A set of fork-join tasks ensuring parallel execution ac-

cording to the happens-before graph

1: function ConstructValidator(B)
2: Initialize a mapping F from each transaction t to its

fork-join task f

3: Create the happens-after graph H ′ by reversing the

edges of H
4: for all t ∈ S do
5: B ← all transactions u ∈ H ′ that happen immediately

before t , i.e., its outedges

6: Create a fork-join task f for t that first joins with all

tasks in B, i.e.,

f ← for (b in B ) { F . get (b ). join () } execute(t )

7: Save the new fork-join task in F , i.e., F .put(t , f )
8: end for
9: return the value set of F , the fork-join tasks

10: end function

miner’s original, speculative schedule. Algorithm 1 provides a high-

level sketch of the operation of the miner. By logging the locking

schedule during parallel execution, the miner generates a happens-

before graph of transactions according to the order in which they

acquire locks and commit. A valid serial history is produced from a

topological sort of this graph. Algorithm 2 constructs the validator

by scanning through the list of actions as they appear in the serial

history. A fork-join task is created for each action and stored for

lookup by its identifier. Each task will first lookup and join any

tasks that must precede it according to the locking schedule before

executing the action itself.

The resulting fork-join program is not speculative, nor does it re-

quire inter-thread synchronization other than forks and joins. The

validator is not required to match the miner’s level of parallelism:

using a work-stealing scheduler [1], the validator can exploit what-

ever degree of parallelism it has available. The validator does not

need abstract locks, dynamic conflict detection, or the ability to roll

back speculative actions, because the fork-join structure ensures

that conflicting actions never execute concurrently.



To check that the miner’s proposed schedule is correct, the val-

idator’s virtual machine records a trace of the abstract locks each

thread would have acquired, had it been executing speculatively.

This trace is thread-local, requiring no expensive inter-thread syn-

chronization. At the end of the execution, the validator’s VM com-

pares the traces it generated with the lock profiles provided by the

miner. If they differ, the block is rejected.

What is a miner’s incentive to publish a block’s fork-join sched-

ule? A miner who publishes an incorrect schedule will be detected

and its block rejected, but a miner might publish a correct sequential

schedule equivalent to, but less parallel than the schedule it discov-

ered. Such a tactic seems ill-advised, however, because that block

may be competing with other blocks produced at the same time,

and the miner will be rewarded only if the other miners choose

to build on that block. Publishing a block with a parallel valiation

schedule makes the block more attractive for validation by other

miners. Because fork-join schedules are published in the blockchain,

their degree of parallelism is easily evaluated.

5 CORRECTNESS
Concurrent calls to smart contract functions might leave persistent

storage in an inconsistent state not possible after a serial execution.

Instead, we must show that every concurrent execution permitted

by our proposal is equivalent to some sequential execution. Because

miners are free to choose the order in which contracts appear in a

block, any sequential execution will do.

Our argument builds on prior proofs that transactional boosting

is serializable [11, 16, 17]. A given execution of a contract’s function

involves a sequence of storage operations on persistent objects. (The

Ethereum gas restriction ensures this sequence is finite.) Recall

that if two storage operations map to distinct abstract locks, then

they commute. If another thread executes another sequence of

operations, and there are two operations that do not commute,

then both threads will try to acquire the same lock, and one will

be delayed until the other completes. (Deadlocks are detected and

resolved by aborting one execution.) As proved elsewhere [11, 16,

17], the result is a serializable execution
5
.

We cannot guarantee that the schedule published by the miner

is the same one that it executed, but we can guarantee the two are

equivalent to a common sequential history. Validators replay the

concurrent schedule published by the miner, and will detect if the

schedule produces a final state different from the one recorded in

the block, or if the schedule has a data race (an unsynchronized

concurrent access).

6 IMPLEMENTATION
Because the EVM is not multithreaded, our prototype uses the Java

Virtual Machine (JVM). Speculative actions are executed by the

Scala Software Transactional Memory Library (ScalaSTM [21]).

Examples of smart contracts were translated from Solidity into

Scala, then modified to use the concurrency libraries. Each function

from the Solidity contract is turned into a speculative transaction

by wrapping its contents with a ScalaSTM atomic section. Solidity
mapping objects are implemented as boosted hashtables, where

5
Because speculative executions take place entirely within a virtual machine, opac-

ity [10] is not an issue.

key values are used to index abstract locks. Additionally, solidity

struct types were translated into immutable case classes. Methods

take a msg field to emulate Solidity contracts’ global state, which

includes details of the transaction, addresses of participants, and so

on. Scalar fields are implemented as a single a boosted mapping.

The Solidity throw operation, which explicitly rolls back a con-

tract execution, is emulated by throwing a Java runtime exception

caught by the miner.

In our prototype, abstract locks are implemented via interfaces

exported by ScalaSTM, relying on ScalaSTM’s native deadlock de-

tection and resolution mechanisms.

6.1 Miners and Validators
Miners manage concurrency using Java’s ExecutorService . This
class provides a pool of threads and runs a collection of callable
objects in parallel. A block of transactions in Ethereum is imple-

mented as a set of callable objects passed to the thread pool. To

generate locking profiles from the parallel execution, we instru-

ment smart contracts to log when atomic sections start and end, as

well as calls to boosted operations. From the log, we can encode the

locking schedule as a happens-before graph for the validator. The

validator transforms this happens-before graph into a fork-join pro-

gram. Each transaction from the block is a fork-join task that first

joins with all tasks according to its in-edges on the happens-before

graph.

7 EXPERIMENTAL EVALUATION
Our goal is to improve throughput for miners and validators by

allowing unrelated contracts to execute in parallel. To evaluate this

approach, we created a series of benchmarks for sample contracts

that vary the number of transactions and their degree of conflict.

These benchmarks are conservative, operating on only one or a few

contracts at a time and permitting higher degrees of data conflict

than one would expect in practice.

Our experiments are designed to answer two questions. (1) For

a given amount of data conflict, how does speedup change over

increasing transactions? We expect to see more speedup as the

number of transactions increases, limited by the number of cores

available on the underlying hardware. (2) How does the speedup

change as data conflict increases? For low data conflict, we expect

our parallel miner to perform better than serial. But as data con-

flict increases, we expect a drop-off in speedup, limited by core

availability.

7.1 Benchmarks
There are four benchmarks, one for each of the example contracts

we implemented, Ballot, SimpleAuction, and EtherDoc, as well

as the Mixed benchmark containing transactions from all other

contracts. For each benchmark, our implementation is evaluated on

blocks containing between 10 and 400 transactions with 15% data

conflict, as well as blocks containing 200 transactions with data

conflict percentages ranging from 0% to 100% data conflict. The data

conflict percentage is defined to be the percentage of transactions

that contend with at least one other transaction for shared data. As

we will see, the impact of data conflict on speedup depends on the

contract implementation.



These benchmarks are conservative. For all benchmarks besides

Mixed, the entire block operates on the same contract, calling only

one or two methods. In reality, mined blocks contained transac-

tions on unrelated contracts and accounts. While the theoretical

maximum number of transactions per block is currently around

200 transactions
6
, we test a wide range from 10 to 400. This maxi-

mum increases and decreases over time, as determined by miner

preference [9]. In practice, the number of transactions can be far

fewer per block, e.g., when there are costly transactions. For test-

ing speedup over number of transactions, we fix the data conflict

rate at 15%, though we expect that blocks in practice rarely have

very much internal data conflict. While we did not measure data

conflict in the existing blockchain, our approach implemented in

EVM could be used to collect such data on an existing blockchain.

For testing speedup as data conflict increases, we fix the number of

transactions per block to 200, the current theoretical maximum.

Ballot. This contract is an example voting application from the

Solidity documentation [23] and is described in Section 2. For all

benchmarks, the contract is put into an initial state where voters

are already registered. All block transactions for this benchmark

are requests to vote on the same proposal. To add data conflict,

some voters attempt to double-vote, creating two transactions that

contend for the same voter data. 100% data conflict occurs when all

voters attempt to vote twice.

SimpleAuction. This contract, also from the Solidity documen-

tation [23] implements an auction. There is a single owner who

initiates the auction, while any participant can place bids with the

bid() method. A mapping tracks how much money needs to be

returned to which bidder once the auction is over. Bidders can then

withdraw() their money. For the benchmarks, the contract state

is initialized by several bidders entering a bid. The block consists

of transactions that withdraw these bids. Data conflict is added by

including new bidders who call bidPlusOne() to read and increase
the highest bid. The rate of data conflict depends on how many

bidders are bidding at the same time, thus accessing the same high-

est bidder. 100% data conflict happens when all transactions are

bidPlusOne() bids.

EtherDoc. EtherDoc
7
is a “Proof of Existence” decentralized ap-

plication (DAPP) that tracks per-document metadata including

hashcode and owner. It permits new document creation, metadata

retrieval, and ownership transfer. For the benchmarks, the contract

is initialized with a number of documents and owners. Transactions

consist of owners checking the existence of the document by hash-

code. Data conflict is added by including transactions that transfer

ownership to the contract creator. As with SimpleAuction, all con-

tending transactions touch the same shared data, so we expect a

faster drop-off in speedup with increased data conflict than Ballot.

100% data conflict happens when all transactions are transfers.

Mixed. This benchmark combines transactions on the above smart

contracts in equal proportions, and data conflict is added the same

way in equal proportions from their corresponding benchmarks.

6
A transaction costs 21,000 gas plus the gas for the computation [25]. The gas limit on

block 3,110,235 (latest as of writing) was 4,005,875, a maximum close to 200.

7
https://github.com/maran/notareth

7.2 Results
We ran our experiments on a 4-core 3.07GHz Intel XeonW3550 with

12 GB of memory running Ubuntu 16. All of our experiments run

on the Java Virtual Machine (JVM) with JIT compilation disabled.

Parallel mining and validation are run with a fixed pool of three

threads, leaving one core available for garbage collection and other

system processes/threads.

For each benchmark, blocks were generated for each combina-

tion of the number of transactions and data conflict percentage.

Each block is run on the parallel miner, the validator, and a serial

miner that runs the block without parallelization. The serial results

serve as the baseline for computing speedup. The running time

is collected five times and the mean and standard deviation are

measured. All runs are given three warm-up runs per collection.

Figure 2 shows the speedup of the parallel miner and valida-

tor relative to the serial miner for all. (The running times with

mean and standard deviation can be found in Appendix A.) The

left charts plot the speedup over the number of transactions in the

block at a fixed data conflict percentage of 15%. The speedup for all

benchmarks follows roughly the same pattern. For low numbers of

transactions, there is no speedup and even some slowdown. This is

likely due to data conflict as well as the overhead of multithreading.

For over around 50 transactions, there is a speedup that increases

to about 2x, in line with expectations from a thread pool of size

three. EtherDoc is an exception, seeing less than 1.5x speedup. The

validator generally has a higher speedup than the parallel miner.

This is because the parallel miner has done the hard work of finding

data conflict and produced a locking schedule for the validator to

follow.

The right-hand charts of Figure 2 plot the speedup as the data

conflict percentage increases for fixed blocks of 200 transactions.

As data conflict increases, the miner’s speedup reduces from 2x to

close to serial as many transactions touch shared data. The validator

also starts at around 2x with no data conflict, but goes down to

about 1.5x, again benefiting from the work of the parallel miner.

Ballot’s parallel mining hovers around 1.5x speedup, suffering

little from the extra data conflict. Data conflict in SimpleAuction

and EtherDoc, however, has an expectedly higher impact, because

each contending transaction touches the same data. The Mixed

benchmark provides a more realistic view of a block by combining

transactions from unrelated contracts. Even though EtherDoc re-

duces parallelism under high data conflict, when mixed with other

transactions, the parallel miner can still gain a substantial speedup.

The average of speedups of all benchmarks is 1.33x for the par-

allel miner and 1.69x for the validator. Table 1 shows the average

speedups for each benchmark.

7.3 Discussion
These results show that speculative concurrent execution speeds

up mining when threads are occupied and the data conflict rate is

not too high. Data conflicts among transactions in the same block

is likely to be infrequent over the long term. (Miners could also

choose transactions so as to reduce the likelihood of conflict, say by

including only those contracts that operate on disjoint data sets.)

Due to limited hardware, our experiments used only three concur-

rent threads, but even this modest level of concurrency showed a

https://github.com/maran/notareth
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Figure 2: The speedup of the miner and validator versus serial mining for each benchmark. The left charts are the speedup
as block size increases, while the right are the speedup as data conflict increases.



SimpleAuction Ballot EtherDoc Mixed
Conflict BlockSize Conflict BlockSize Conflict BlockSize Conflict BlockSize

Miner 1.23x 1.58x 1.57x 1.35x 0.78x 1.09x 1.57x 1.45x

Validator 1.35x 1.60x 1.73x 1.58x 2.04x 1.75x 1.86x 1.64x

Table 1: The average speedups for each benchmark.

benefit. Concurrent hardware has proved effective for speeding up

solutions to proof-of-work puzzles, and now similar investments

could speed up smart contract execution and validation.

Concurrent smart contract execution speeds up miners by en-

abling them to construct blocks faster before appending them to

the chain. But in permissionless blockchains, the bulk of miner

time is spent computing proof-of-work for the block after construc-

tion. Concurrent smart contracts, however, still provide a big win

for validators. Validators spend much time executing transactions,

while validating the proof-of-work by miners is fast. Ethereum is

transitioning to proof-of-stake to reduce the computational burden

imposed by proof-of-work. Additionally, permissioned blockchains

eschew proof-of-work, so concurrent smart contract execution pro-

vides even more of a boost to throughput to these blockchains.

8 RELATEDWORK
The notion of smart contracts can be traced back to an article

by Nick Szabo in 1997 [24]. Bitcoin [20] includes a scripting lan-

guage whose expressive power was limited to protect against non-

terminating scripts. Ethereum [8] is perhaps the most widely used

smart contract platform, employing a combination of a Turing-

complete virtual machine protected from non-termination by charg-

ing clients for contract running times. Solidity [22] is the most

popular programming language for programming the Ethereum

virtual machine.

Luu et al. [18] identify a number of security vulnerabilities and

pitfalls in the Ethereum smart contract model. Luu et al. [19] also
identify perverse incentives that cause rational miners sometimes to

accept unvalidated blocks. Delmolino et al. [7] document common

programming errors observed in smart contracts. The Hawk [15]

smart contract system is designed to protect the privacy of partici-

pants.

As noted, many of the speculative mechanisms introduced here

were adapted from transactional boosting [11], a technique for trans-
forming thread-safe linearizable objects into highly-concurrent

transactional objects. Boosting was originally developed to enhance

the concurrency provided by software transactional memory sys-

tems [12] by exploiting type-specific information. Other techniques

that exploit type-specific properties to enhance concurrency in

STMs include transactional predication [3] and software transac-
tional objects [13].

There are other techniques for deterministically reproducing a

prior concurrent execution. See Bocchino et al. [2] for a survey.
Cachin et al. discuss non-deterministic execution of smart con-

tracts in the context of BFT-based permissioned blockchains [4].

9 CONCLUSION
We have shown that one can exploit multi-core architectures to

increase smart contract processing throughput for both miners and

validators. First, miners execute a block’s contracts speculatively

and in parallel, resulting in lower latency whenever the block’s

contracts lack data conflicts. Miners are incentivized to include in

each block an encoding of the serializable parallel schedule that

produced that block. Validators convert that schedule into a deter-

ministic, parallel fork-join program that allows them to validate

the block in parallel. Even with only three threads, a prototype

implementation yields overall speedups of 1.33x for miners and

1.69x for validators on representative smart contracts.

Although our discussion has focused on “permisionless” sys-

tems where anyone can participate, the mechanisms proposed here

would also be useful for “permissioned” systems, such as Hyper-

ledger [14], where participants are controlled by an authority such

as an organization or consortium. For example, in a permissioned

blockchain based on Practical Byzantine Fault-Tolerance (PBF) [5],

the leader might use speculative execution to discover a concurrent

schedule for a block, while particpants in the PBFT protocol would

use the concurrent schedule to validate the block before voting.

Future work includes adding support for multithreading to the

Ethereum virtual machine, in much the same way as today’s Java

virtual machines. Our proposal for miners only is compatible with

current smart contract systems such as Ethereum, but our overall

proposal is not, because it requires including schedulingmetadata in

blocks and incentivizing miners to publish their parallel schedules.

It may well be compatible with a future “soft fork” (backward

compatible change), a subject for future research.

In addition to a multithreaded VM, we see room for advancement

in programming language support for smart contracts. Designing a

language that lends itself to finer-grained concurrency will increase

the success of speculative execution thereby increasing throughput.

It would also be useful for the language to provide better control

of concurrency, helping the smart contract developer maximize

throughput while avoiding concurrency pitfalls.
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