
Paul	Gazzillo and	Shiyi	Wei
ICSE-NIER	2019

Conditional	Compilation	Is	Dead,
Long	Live	Conditional	Compilation!

@paul_gazzillo pgazz.com🔗



The	C	Preprocessor	Creates	a	Dilemma

• Conditional	compilation	implemented	with	the	C	preprocessor
• Really	great	for	performance
• Really	bad	for	software	tools

2



Goal:	Replace	Preprocessor	Usage	with	C	Itself

• Easier	for	software	tools
• Preserve	existing	C	software
• How?

• New	C	language	constructs
• Automate	conditional	compilation	with	compiler	optimizations

3



C	Use	Has	Grown!

4

IEEE	Spectrum	Popularity	Rankings,	May	2019

IoT	Developer	Survey,	Eclipse	Foundation	2019

TIOBE	Popularity	Rankings,	May	2019



Conditional	Compilation	Makes	Reuse	Possible

• Linux	configurable	to	many	devices
• No	extra	programming	needed

5

Linux IoT devices in our home

 7
	

Linux



C	Preprocessor	Used	Extensively

• Macros	used	about	1	in	4	SLoC,	in	general	[Ernst	et	al	1999]
• Linux	v4.19	(late	2018)

• Developers	use	it	to	hand-optimize	object	file	size
• Compiling	all	Linux	features	would	make	an	enormous	binary

6

Source	lines	of	code about	12	million

Preprocessor	macros	defined about	1	million

Preprocessor	directives	used about	2	million

Preprocessor	conditional	blocks about	60,000



Conditional	Compilation	Is	Implemented	with	
the	Preprocessor

7

void irq_add(int *ops) {
int irq = *ops;

}

int *ops = NULL;

ops = &irq_ops;

irq_add(ops);

#ifdef CONFIG_OF_IRQ_DOMAIN

#endif

#ifdef CONFIG_OF_IRQ

#endif

Configuration	options
tested	at	build-time



Variability	Bugs:	Existence	Depends	on	
Configuration	Settings

8

void irq_add(int *ops) {
int irq = *ops;

}

int *ops = NULL;

ops = &irq_ops;

irq_add(ops);

#ifdef CONFIG_OF_IRQ_DOMAIN

#endif

#ifdef CONFIG_OF_IRQ

#endif

3.	Null	pointer	error in	
some	configurations

1.	Initialize		“ops”	
pointer

2.	Only	set	in	some
configurations

Only	certain	configurations	have	bugs



Why	Don’t	We	Just	Use	a	“Better”	Language?

9

• Millions	(billions?)	of	SLoC	in	active,	widely-
used	projects

• Rust	and	Go	will	(hopefully)	supplant	C,	but…
• Rust	has	configuration	macros

• #[cfg]	attributes
• Go	has	build	constraints



Great	Research	Efforts	Tackling	Conditional	Compilation

• New	language
• Capture	conditional	compilation	as	
variability

• Similar	challenges	for	analysis	tools

10

• “Lift”	analyses	to	all	configurations
• State-of-the-art	is	intraprocedural
data	flow

• Much	left	to	match	pure	C	tools,	e.g.,
• Points-to	analysis
• Abstract	interpretation
• Model	checking
• Separation	logic
• Symbolic	execution



Best	of	Both	Worlds:
Keep	C	and	Automate	Conditional	Compilation

• Replace	preprocessor	with	a	new	compiler	phase
• Configuration	macros	->	program	values
• Conditional	compilation	becomes	compiler	optimization

• Constant	prop	+	dead	code	elimination	=	#ifdef

11



What	are	the	Constructs	of	the	Combined	
Language?

• Formal	semantics	typically	relies	on	well-defined	abstract	syntax
• The	combined	C/preprocessor	language	has	wonky	syntax

• Some	usage	should	probably	be	restricted

• What	are	the	semantics	of	the	combined	language?
• CMod formally	defined	#include	usage	[Srivastava	et	al.,	TSE	2008]

12

#define LBRACE {
int main() LBRACE
}



Map	Preprocessor	Usage	to	C

• Macro	->	program	variable
• #ifdef	->	C	conditional
• Conditional	compilation	->	dead	code	elimination
• Transformation	has	been	done	before	[Iosif-Lazar	et	al.,	Sci.	Prog. 2017]

13

int *ops = NULL;
#ifdef CONFIG_OF_IRQ
ops = &irq_ops;
#endif
irq_add(ops);

bool CONFIG_OF_IRQ;
int *ops = NULL;
if (CONFIG_OF_IRQ) {
ops = &irq_ops;
}
irq_add(ops);



Some	Constructs	Are	Questionable

• Code	duplication	is	awkward
• Could	alter	conditions	to	have	only	two	branches

• Should	such	cases	be	prohibited?

14

#ifdef CONFIG_PSAUX
if (imajor == 10)

i = 31;
else

#endif
i = iminor – 32;

bool CONFIG_PSAUX;
if (CONFIG_PSAUX) {

if (imajor == 10)
i = 31;

else
i = iminor – 32;

} else {
i = iminor – 32;

}



#ifdefs	Can	Appear	Around	Declarations

• #ifdefs	frequently	surround	declarations	and	definitions
• Akin	to	a	dependent	type

• Type	and	existence	of	"quota"	depends	on	program	variable

• Similarity	observed	before	in	[Chen	et	al.,	TOPLAS	2014]

15

struct {
u16 size;

#ifdef CONFIG_QUOTA
int quota;

#endif
}

bool CONFIG_QUOTA;
struct {
u16 size;

int __attribute__((config (CONFIG_SMP))) quota;

}



Conclusion

• Preprocessor	dilemma
• Great	for	performance
• Bad	for	tools

• Goal:	Replace	preprocessor	usage	with	C	itself
• Automate	conditional	compilation
• Extensions	for	some	preprocessor	use	cases

• Future	work
• Language	definition:	What	are	the	right	constructs?		What	should	be	illegal?
• Empirical	evaluation	of	how	often	translation	is	possible
• New	compiler	phase	and	optimizations

16

@paul_gazzillo pgazz.com🔗




