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ABSTRACT

Many critical software systems developed in C utilize compile-

time configurability. The many possible configurations of this soft-

ware make bug detection through static analysis difficult. While

variability-aware static analyses have been developed, there re-

mains a gap between those and state-of-the-art static bug detection

tools. In order to collect data on how such tools may perform and

to develop real-world benchmarks, we present a way to leverage

configuration sampling, off-the-shelf łvariability-obliviousž bug

detectors, and automatic feature identification techniques to sim-

ulate a variability-aware analysis. We instantiate our approach

using four popular static analysis tools on three highly config-

urable, real-world C projects, obtaining 36,061 warnings, 80% of

which are variability warnings. We analyze the warnings we collect

from these experiments, finding that most results are variability

warnings of a variety of kinds such as NULL dereference. We then

manually investigate these warnings to produce a benchmark of

77 confirmed true bugs (52 of which are variability bugs) useful for

future development of variability-aware analyses.
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·General and reference→ Empirical studies; · Software and
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ing and debugging.

KEYWORDS

static analysis, configurable C software, variability bugs

ACM Reference Format:

Austin Mordahl, Jeho Oh, Ugur Koc, Shiyi Wei, and Paul Gazzillo. 2019.

An Empirical Study of Real-World Variability Bugs Detected by Variability-

Oblivious Tools. In Proceedings of the 27th ACM Joint European Software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338967

Engineering Conference and Symposium on the Foundations of Software En-

gineering (ESEC/FSE ’19), August 26ś30, 2019, Tallinn, Estonia. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3338906.3338967

1 INTRODUCTION

Systems developed in C form some of the largest and most im-

portant software infrastructure. This software, such as the Linux

kernel or the BusyBox embedded toolkit, is used in a broad range

of applications, from large-scale datacenters to millions of Internet-

of-Things devices. C programmers use compile-time variability to

enable a single codebase to be customized to this diverse range of

settings. They implement software configurations in the Makefile

and C preprocessor to decide which part of the source code is built

by the compiler, allowing for billions or trillions of variations of

the compiled program.

Variability bugs are bugs that only exist under certain configu-

rations of the software. These are made possible by the build and

configuration system, which modify the source code to fit a chosen

configuration.1 Such configurable code is necessary for codebases

to support a wide variety of hardware and application settings, but

studies show it also creates problems for debugging and mainte-

nance of highly configurable codebases [1ś3].

Variability bugs create a serious challenge for automatic bug

detection. Most static analysis tools operate on one configuration at

a time, i.e., are variability-oblivious, or use ad-hoc heuristics [4, 5],

making them blind to code in other configurations. Checking config-

urations one-at-a-time is intractable when even small configurable

systems have trillions of configurations [6].

To address this problem, researchers have developed variability-

aware analyses [4, 5, 7ś13] that process all configurations simultane-

ously. To the best of our knowledge, the state-of-the-art variability-

aware bug detector applies control- and data-flow analyses to

discover bugs such as double free and freeing of static memory

[7]. While these advances in bug detection are highly promising,

they are still in the early stages when compared to widely-used

variability-oblivious bug detectors such as Infer [14], which uses

separation logic to find memory safety bugs, and CBMC [15], which

uses abstract interpretation and model checking. These analyses,

which can detect bugs such as buffer overflow, array-out-of-bounds,

and security vulnerabilities, are in wide use.

1In this work we focus on variability bugs due to compile-time variability, but such
bugs can also be due to run-time variability.
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The continued development of variability-aware analyses is im-

portant. But given the gap between such tools and state-of-the-art

bug detectors, there is still a lack of data about the utility of such

analyses when compared to their variability-oblivious counterparts.

Moreover, there is a lack of benchmarks to provide ground truths for

developing variability-aware analysis. To the best of our knowledge,

the largest variability bug database [1] contains bugs encountered

by users over the past decade, making it difficult to reproduce these

bugs in the original software.

How can we find variability bugs that existing variability-aware

analysis may not detect? Ideally, we would like to take off-the-shelf

bug detectors and convert them to be variability-aware to gather

data and develop benchmarks. But this Herculean task requires

large time resources and would itself benefit from having ground-

truth benchmarks during development. In order to collect data on

how such tools may perform and to develop real-world benchmarks,

we propose simulating variability-awareness with off-the-shelf bug

detectors.

Simulating variability-awareness is based on a simple technique:

run bug detectors on a sample of configurations. Sampling of config-

uration spaces has been studied extensively [10, 16ś30], and some

previous work has applied a bug detector to samples of configura-

tions [30] in the context of comparing sampling algorithms. But

to be a simulation, we argue that (i) the sample of configurations

should be representative of complete variability-awareness and (ii)

it should integrate the results of the many variability-oblivious runs

into variability-aware results. To achieve a representative sample,

we use a recent advance in configuration sampling that guarantees

uniformity yet scales to colossal configuration spaces [31]. Previous

sampling algorithms could do one or the other, but not both.

To achieve integration we have developed a new simulation

framework that wraps existing bug detectors. It automatically ap-

plies a bug detector to all sampled configurations, aggregates and

deduplicates the resulting warnings, and finds feature interactions,

thereby simulating the output of a variability-aware analysis. Using

this framework, we analyze the warnings from four off-the-shelf

bug detection tools (Infer, CBMC, Clang, and Cppcheck) on three

highly-configurable codebases (the axTLS webserver, the Toybox

and BusyBox embedded toolkits). These codebases have hundreds

of configuration options leading to trillions of valid configurations.

Representing weeks of computing time, we collected 36,061 warn-

ings, of which 28,631 (almost 80%) are variability warnings.

We performed data analysis of the resulting warnings that con-

firms most warnings are due to variability, that shows variability

warnings are of many types, even those not currently supported

by existing variability-aware analysis tools, and that proves warn-

ings may appear in few configurations, indicating the need for

variability-awareness. Perhaps surprisingly, we also show that all

warnings produced by any tool/program combination can be cov-

ered by a small number of configurations. Our data demonstrate a

trade-off between the added complexity of variability-awareness

and the need to cover all possible defects, e.g., for safety-critical

software.

Finally, we construct a reproducible dataset including variability

bugs in recent, real-world software, useful as a benchmark for

future analysis development. We manually investigated many of

our variability warnings to confirm whether they are true bugs.

1 #ifdef CONFIG_BIGINT_SLIDING_WINDOW

2 for (j = i; j > 32; j /= 5) /* work out an optimum size */

3 window_size++;

4 /* work out the slide constants */

5 precompute_slide_window(ctx, window_size, bi);

6 #else /* just one constant */

7 ctx->g = (bigint **)malloc(sizeof(bigint *));

8 ctx->g[0] = bi_clone(ctx, bi); // warning

9 ctx->window = 1;

10 bi_permanent(ctx->g[0]);

11 #endif

Figure 1: An example of a confirmed bug found during our

experiments. From axTLS, crypto/bigint.c.

This investigation yielded a set of 77 true positive bugs showing

that our simulation framework can be used to find new variability

bugs. We have made our framework and dataset publicly available.2

The contributions of this paper are the following:
• A framework that simulates variability-aware analysis by

integrating off-the-shelf static analysis tools and running

them on uniform random samples of the configuration space

(Section 3).

• An empirical evaluation of the warnings produced by four

static bug detectors on three highly-configurable C code-

bases and an analysis of warnings that shows potential de-

fects are indeed obscured by variability (Section 4).

• A real-world variability bug benchmark found by manually

investigating the warnings from our evaluation as well as the

feature interactions that lead to these bugs. This benchmark

is beneficial for tool developers to evaluate future analyses

(Section 5).

2 WHAT ARE VARIABILITY BUGS?

Figure 1 is an example of a variability bug, in this case a NULL

dereference, found during our experiments running the Infer static

analysis tool on axTLS. Line 7 sets ctx->g to the return value of

malloc, which can be NULL, and line 8 dereferences that value,

ctx->g[0], without checking for NULL, a well-known defect.3 This

is a variability bug, because it only appears in certain configurations

of the codebase.

Even though static analyses such as Infer are sound,4 they only

operate on a single configuration at a time, i.e., the soundness

guarantees only apply to the chosen configuration. To see why

this is the case, notice that this vulnerable source code is guarded

by a preprocessor conditional indicated by the #ifdef, #else, and

#endif on lines 1, 6, and 11, respectively. Preprocessor conditionals

are not part of the C language, but are evaluated before the C source

code is compiled to implement variations of the source code.

CONFIG_BIGINT_SLIDING_WINDOW is a preprocessor macro that

the preprocessor conditional tests to decide whether to include

either lines 2ś5 or lines 7ś10, but never both. The macro is set via

the configuration system by the user. This usage of the preprocessor

illustrates how compile-time variability is typically implemented.

In our example in Figure 1, the NULL dereference bug on line 8

only appears when the CONFIG_BIGINT_SLIDING_WINDOW config-

uration option is disabled, because that line is never compiled

2https://github.com/paulgazz/kconfig_case_studies/releases/tag/v1.0
3CWE-690. https://cwe.mitre.org/data/definitions/690.html
4They are soundwith respect to a subset of the language semantics, i.e., soundiness [32].
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Figure 2: An overview of our approach.

into the final binary. Therefore, if a static analysis tool, even a

sound one, is only run on a configuration that enables the op-

tion, it will not find the bug. Interestingly, there is a different

NULL dereference bug when the option is enabled. Inside of the

precompute_slide_window function called on line 5 is a code clone

of lines 7ś10. These two bugs live in mutually exclusive configu-

rations, so finding and fixing one does nothing to help with the

other.

If there were a small number of configurations, trying every

combination of configuration options might be feasible, but axTLS

has 94 configuration options and around two trillion valid combi-

nations of them. Checking all configurations is not feasible, and we

do not know a priori which configurations may be vulnerable.

In C, configurations are typically implemented using the pre-

processor, as shown in the example above, and with Makefiles or

a related build specification language (e.g., Kbuild). The configu-

ration system takes configuration option settings from the user

and passes them to the build system and the preprocessor, which

then select a subset of the source code to compile and link into

the final binary. Prior work shows how extensively configurable

code is implemented with the preprocessor and Makefiles [1, 4ś

6, 33]. Compile-time variability results in codebases that are both

highly-configurable and efficient, resulting in a smaller, faster bi-

nary, particularly important for low-level systems software.

As we see in Figure 1, however, this configurability also obscures

software defects. Previous studies show that such configurable

code is dangerous: it has been correlated with more bugs [2] and

shown to be more difficult for developers to debug [3]. We use our

simulation framework to find variability bugs.

3 FRAMEWORK AND STUDY SETUP

Figure 2 shows an overview of our simulation framework. It takes

in a codebase and produces a set of warnings for later manual

investigation. The framework itself consists of four main steps: (i)

the sample generation, using an existing tool to get uniform random

samples for the given codebase [31]; (ii) automatically applying

a chosen static analysis tool on all sampled configurations; (iii)

aggregating and deduplicating the results, finding which warnings

appear in multiple configurations; and (iv) identifying features,

using the list of configurations each warning occurred in to infer

which configuration options (i.e., features) produce the warning.

We apply this framework to multiple static analysis tools and

highly configurable codebases. After running our framework on

Table 1: Details of the target programs.

Program Version C SLoC Options Valid Configs

axTLS 2.1.4 17,232 94 2.0 × 1012

Toybox 0.7.5 42,190 316 1.4 × 1081

BusyBox 1.28.0 162,732 998 2.0 × 10213

each combination of tool and codebase, we have a collection of warn-

ings for each combination that simulates variability-aware analysis

results. The remainder of Figure 2 shows our process for manually

investigating these variability warnings to collect a dataset of true

bugs, useful as a benchmark.

We now describe each step of our approach in detail.

3.1 Sample Generation

Generating a configuration sample is not as simple as randomly

combining configuration options, as constraints exist between dif-

ferent options, e.g., some options are mutually exclusive. A config-

uration is invalid if the constraints defined by the configuration

system are not satisfied. Off-the-shelf bug detectors often require

compilation of the program to resolve preprocessor directives and

generate intermediate representations for the analysis. We thus

require every configuration in the sample be valid.

The state-of-the-art tool for generating representative samples

from highly-configurable software is Smarch [31]. Smarch is a uni-

form sampling algorithm for software product lines based on a

#SAT solver [34]. Smarch scales to large configurable software by

obviating the need to exhaustively enumerate configurations from

the constraints. Instead, Smarch generates a unique configuration

from a randomly-chosen number on demand. Sampling of valid

configurations requires first knowing the set of constraints between

configuration options, i.e., the feature model. The state-of-the-art

tool, Kclause [31] from the Kmax [35] project is used for automat-

ically extracting these constraints from the Kconfig specification

language used in our target projects. It works by interpreting Kcon-

fig language constructs as formal logical models and optimizing

them to reduce the size of the reuslting model.

While our framework is modular and accepts samples from any

sampling algorithm that generates valid configurations, a uniform

random sampling algorithm allows us to draw statistically sound

conclusions about the population of configurations based on sample

results, within a small margin of error and confidence level. For

example, with a configuration sample having a 5% margin of error

and 1% confidence level, if we observe that 80% of all bugs detected

in a sample are variability bugs, we can say we are 95% sure that

between 79% and 81% of all bugs that exist in the target software are

variability bugs, allowing us to foresee the results of a variability-

aware analysis.

We used the programs listed in Table 1 for our empirical study,

because they all (i) are open source, (ii) are highly configurable, and

(iii) use Kbuild, which allows to automatically extract configuration

constraints with Kclause. For each target program, we generated

1,000 valid configurations. This sample size ensures the results are

within a 5% margin of error and 1% confidence interval.

3.2 Using Off-the-Shelf Bug Detectors

We chose four off-the-shelf bug detectors from a list [36] for our

investigation: CBMC 5.3 [15], Facebook Infer 0.15.0 [14], Cppcheck
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Table 2: Descriptions of the warning types.

Warning Type Description

Array_Bounds Array accessed beyond allocated length.

Assertion Failed assertions either provided by the user or gen-

erated automatically by the model checker.

Overflow Overflow of integers.

NaN Floating point arithmetic producing NaN (i.e., infini-

ties or the results of computations with infinities).

Pointer Mismatched types between pointer usage and defini-

tion.

Null_Deref Dereferencing a null pointer.

Dead_Store Values that are stored in variables but never used.

Memory_Leak Memory that is dynamically allocated but never

freed.

Resource_Leak Resources (e.g., file descriptors, sockets) that are

opened but never closed.

Uninitialized_Val Values that are used without being initialized.

API Improper use of various APIs.

Unix_API improper usage of a Unix API.

Logic_Error A wide variety of warnings, such as unallowed func-

tion calls after vforks and undefined behaviors.

Memory_Error Memory and resource leaks.

Security Use of insecure function calls (e.g., vfork).

Undef_Behavior Undefined behavior of constructions or expressions.

1.72 [37], and the built-in analyzer in Clang 7.0 [38]. Our criteria for

choosing bug detectors were that (i) they worked on C code, and

(ii) they produced bug warnings as opposed to other code metrics,

such as line counts.

The detectors we chose reported a variety of warnings, defined

in Table 2. CBMC reports Array_Bounds, Assertion, NaN, Overflow,

Pointer, and Null_Deref. Infer reports Dead_Store Memory_Leak,

Null_Deref, Resource_Leak, and Uninitialized_Val. Clang reports

API, Unix_APIs, Dead_Store, Logic_Error, Memory_Error, and Se-

curity. Cppcheck does not report discrete warning types, so we

manually mapped Cppcheck warnings to types that were found in

other tools: Array_Bounds, Memory_Error, Null_Deref, Overflow,

and Uninitialized_Val. Additionally, we defined the Undef_Behavior

warning type for Cppcheck.

These detectors represent two different ways of running an

off-the-shelf bug detector. CBMC and Infer attach themselves to

the build process (in all of our target programs, this was make),

collecting information about the build process and generating inter-

mediate representations of the program. For these, we use a script

that iteratively runs the appropriate tool as an attachment to the

build process. Cppcheck and Clang both run on individual files, so

for those, we instead use custom scripts that first preprocess the

code. We then run the tools iteratively on each preprocessed file.

In our study, we ran these experiments on two different machines.

Preprocessing of BusyBox took place on a Desktop PC with an Intel

Core i5-3570K CPU@3.40GHz and 16GB RAM running Debian 9.

All other experiments took place on a server with 24 Intel Xeon

Silver 4116 CPUs@2.10GHz and 128GB RAM running Ubuntu 16.04

LTS. We used a virtual machine to ensure the consistencies in

environment across the machines. In total, experiments took on

the order of weeks of processor time to run; however, we were able

to reduce this in real time through parallelization.

3.3 Deduplication and Formatting

Although configuration options govern the inclusion or exclusion

of different parts of source code, some of a program’s codebase is

common across all configurations. Therefore, many of the warnings

obtained by running a bug detector on each configuration in the

sample are duplicates. We perform post-processing to deduplicate

these warnings, and then output them in a unified format.

We consider two warnings equivalent if they refer to the same

line in the same source code file.5 We write the unique warnings

set for each tool/program combination in JSON format for easier

processing. Figure 3 shows the JSON output of the variability bug

we discussed in Section 2. The łvariabilityž field is our automated

estimation of whether this warning is a variability warning or not.

In our study, a warning is estimated to be generic (i.e., the variability

field is false) if it was detected by the tool in all the configurations

in our sample.6 Otherwise, we regard a warning as variability (i.e.,

the variability field is true). The łautomatic_featuresž field refers

to the configuration options identified in the following step.

1 {

2 "variability": true,

3 "description": "pointer `ctx->g` last assigned on line 1372

could be null and is dereferenced at line 1373, column 5.",

4 "num_configs": 503,

5 "tool": "infer",

6 "filename": "crypto/bigint.c",

7 "line": 1373,

8 "type": "NULL_DEREFERENCE",

9 "configs": [ "263", "562", "575", "..."],

10 "target": "axtls_2_1_4"

11 "automatic_features": [ "CONFIG_BIGINT_SLIDING_WINDOW" ]

12 }

Figure 3: The JSON format of the warning in Figure 1. The

list of configurations is truncated for space.

3.4 Automatic Feature Identification

We perform automatic feature identification by referencing the list

of configurations each warning is present in. For any warningw ,

let Cw be the set of configurations in which w was emitted, and

let C ′
w be the set of configurations in which w was not emitted.

We automatically determine the set of configuration options F

that are common to Cw , and the set of configuration options F ′

that are common to C ′
w . If for any configuration option f , where

f denotes the option being turned on and f ′ denotes the option

being turned off, if f ∈ F and f ′ < F , then we select f as the

configuration option associated with this warning (similarly, if f ′ ∈

F and f ∈ F ′, then we consider f ′ to be associated withw). We do

not consider a configuration option to be associated with a warning

if f is common across both Cw and C ′
w . This methodology can be

extended to determinewhen conjunctions or disjunctions of options

are associated with a warning. As an automated algorithm, this

process succeeded in estimating associated configuration options

in most cases.

5Recall that Cppcheck and Clang run on preprocessed files. The preprocessed files
contain linemarkers that allow us to map preprocessed code to its original source code
line.
6A warning we estimate as generic may be a variability warning if there exists some
valid configuration (not in the sample) on which a tool cannot report the warning. We
believe this estimation is accurate based on our investigation of bugs in Section 5.
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3.5 Manual Classification

We perform manual classification of warnings by code inspection

and team reviews. Our criterion for determining whether a warning

is a true or false positive is whether the description emitted by the

bug detector is correct. For each warning, we hand-traced execution

around the report, recording the values of variables and pointers.

The manual classification was performed by the first author of the

paper, and then presented to all members in this project. We as a

team examined the warnings classified as true positives and con-

firmed them. Our primary goal was soundness in our bug dataset,

i.e., avoid reporting a warning as a true positive when it was a false

positive. It is possible, however, that there were still true positives

mistakenly labeled as false positives, since we did not construct

exploits.

3.6 Manual Feature Confirmation

We manually verify the results of the automatic feature identifica-

tion through code inspection. We perform the following tasks:

• Find C preprocessor directives that surround the source code

with the bug, and extract the configuration options constrain-

ing the directives.

• Find Makefile commands that compile the C file containing

the bug, and extract the configuration options that activate

the commands.

• To ensure correctness, check whether the configuration op-

tions found from the above two steps appeared in the auto-

matic feature identification result.

3.7 Discussion: New Analyses and Programs

Each step in the simulation framework is automated, and is designed

to permit łplugging inž new static analysis tools and new codebases

to investigate. To add a new codebase, we need two things (1) a

feature model describing the configuration constraints for sampling

and (2) a small set of shell instructions to configure and build the tool

for a given configuration. Technically, our framework can support

any sampling algorithm, because the execution engine takes only a

set of configurations to evaluate. Currently, our evaluation is on

codebases that use Kbuild, the Linux build system, because the

sampling tool we use is known to sample these uniformly, but we

have tested it on other codebases for which we do not have uniform

sampling.

Adding new static analysis tools is as simple as creating a new

script that executes the tool. The challenge of supporting a new

static analysis tool, however, is due to their idiosyncrasies. For

instance, the Clang static analyzer provides a convenient tool called

scan-build that uses łpoor man’s interpositionž to analyze an entire

project [39]. This tool does not always work, as the manual warns,

requiring us to customize the analysis process for codebases we

evaluate but are not supported by scan-build. For each combination

of tool and codebase, we have created plugins that overcome most

of the limitations of the static tools for the complex build systems

of our codebases.

4 EMPIRICAL EVALUATION OF WARNINGS

We applied our framework to the three highly configurable code-

bases shown in Table 1, and the four off-the-shelf tools described

in Section 3.2.

The goal of this empirical evaluation is to evaluate what kinds

of variability warnings off-the-shelf bug finders detect and to what

extent such warnings are affected by configurability. To this end,

we ask three research questions:

RQ1 What variability warnings can off-the-shelf bug detectors

find?

RQ2 How are variability warnings distributed over the space

of sampled configurations?

RQ3 How do our results compare to checking a maximum or

minimum configuration?

RQ1.We expect to discover how often and what types of vari-

ability warnings are found. If there are many, this confirms prior

work that shows variability bugs are a serious problem for highly-

configurable software [1, 7]. Moreover, if the types of variability

warnings include serious potential defects that current analyses do

not support, e.g., Null_Deref, then we provide further justification

for the research community to continue developing such analyses.

On the other hand, if variability warnings are rare, variability-aware

analyses may not be needed.

RQ2. Examining the distribution of various types of warnings

across the set of samples will show us how difficult it is to identify

such warnings without variability-aware analyses. If only certain

types of warnings are variability warnings, perhaps the research

community should initially focus on analyses for specific kinds of

bugs. If more serious warnings tend not to be variability warnings,

then this would provide evidence that such analyses may not be

necessary. Moreover, we examine how many configurations are

required to cover the set of warnings. If many configurations are re-

quired, this provides further justification for variability-awareness,

while few configurations may mean that further effort on algo-

rithms for configuration coverage is needed.

RQ3.We compare the results of running the bug detectors on

the maximum configuration defined by each of our codebases. If

we find that the maximum configurations find very few warnings,

this provides further justification for variability-aware analyses.

Otherwise, such analyses may not be much more successful than

selecting one good configuration. Note that our results are only

from a sample of configurations, so we cannot rule out all variability

warnings in all configurations. Additionally we compare against

the minimum and the default configuration (if provided by the

codebase) as a baseline for the number of warnings in our dataset.

4.1 RQ1: What Variability Warnings Can
Off-the-Shelf Bug Detectors Find?

We use a large, representative configuration sample with our ap-

proach, allowing us to examine how often the same warning ap-

pears across different configurations. By using the deduplication

approach described in Section 3.3, we can examine the subset of

configurations in which a warning occurs to discover how it is dis-

tributed across the configuration space. When a warning appears

in all sampled configurations, we can assume it is unlikely to be

a variability warning. Ruling out such warnings, our results still

show a large number of variability warnings, i.e., those that only

appear in a subset of the sampled configurations.

Table 3 shows the number of warnings produced by each static

analysis tool for each target codebase. Each row shows the number
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(a) CBMC (b) Clang (c) Infer (d) Cppcheck

Figure 4: Number of variability and generic warnings, over all programs, categorized by warning type.

Table 3: Summary of warnings found for each combination

of target codebase and static analysis tool. *No warnings

were found for Cppcheck. †Infer did not run on BusyBox.

CBMC Clang Infer Cppcheck

axTLS

Total warnings 2,010 13 46 0

Variability (count) 668 9 20 0

Variability (percent) 33% 69% 43% *

Toybox

Total 4,292 56 112 20

Variability (count) 3,498 49 78 19

Variability (percent) 82% 88% 70% 95%

BusyBox

Total 29,188 324 † 125

Variability (count) 23,896 276 † 118

Variability (percent) 82% 85% † 94%

of total warnings and the number and percentage of the total that

are variability warnings. Each column shows these numbers for

each of the four static analysis tools tested. Note that Infer did

not run on BusyBox because it threw an Assertion failure from its

Clang backend.

Overall, the data show that variability warnings are not uncom-

mon. In most combinations of target system and analysis tool, the

majority of warnings found are variability warnings. When looking

at Toybox and BusyBox, the proportion of variability warnings

is high and fairly consistent across all four static analysis tools,

ranging from 70% to 95%. axTLS had a lower number of variability

warnings. Indeed, Cppcheck reported no warnings at all in our

axTLS sample. In spite of this, the Clang static analyzer appears

to find a higher percentage of variability warnings. Because the

number of warnings is so small in this case, it is difficult to come

to any conclusions for axTLS.

While not necessarily conclusive for all configurable systems,

this provides evidence that more configurability could be correlated

to more potential defects made harder to find due to configurability.

We observed that most C files in Toybox and BusyBox require

turning on at least one configuration option to be included in the

compilation. Therefore, warnings from these files will be classified

as being due to variability as long as there exist some configurations

in our sample that do not compile them.

We conclude from the data that variability warnings are very

frequent, and that existing static analyses would reveal more potential

defects if made variability-aware.

To further understand the above results, we categorize the warn-

ings by their types. Figure 4 shows the distribution of variability

and generic warnings under each type. Each bar in Figures 4a to 4d

aggregates the warnings from all three programs of a certain type.

Overall, variability warnings span all types of warnings, except

for the single Unix_API generic warning reported by Clang. Certain

types dominate the total number of warnings for each tool. 94%

of the CBMC warnings are Null_Deref or Overflow; 80% of the

Clang warnings are Logic_Error or Dead_Store; Uninitialized_Val

counts for 86% of Cppcheck warnings; 91% of the Infer warnings

are Uninitialized_Val, Null_Deref, or Dead_Store. Nevertheless, the

percentage of variability over all warnings of each warning type

is largely consistent with the overall tool performance. For exam-

ple, 85% of Clang warnings are due to variability. When catego-

rized by types, the percentage of variability warnings (except the

Unix_API warning) ranges from 72% (for Memory_Error) to 90%

(for Logic_Error). The only type that has more generic warnings

than variability warnings is Null_Deref by Infer, i.e., 23 generic

warnings vs. 13 variability warnings.

In summary, these data show that variability warnings represent

all types of warnings found by these static analysis tools, including

the potentially dangerous Null_Deref and Overflow.

4.2 RQ2: How Are Variability Warnings
Distributed Over the Space of Sample
Configurations?

RQ1 provides evidence that variability warnings are very frequent,

and we would like to evaluate how these warnings are distributed
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(a) CBMC - [axtls&toybox] (b) Clang (c) Infer (d) Cppcheck

Figure 5: Number of configurations reporting variability warnings, over all programs, categorized by warning type.

Figure 6: The subset of configurations that find all warnings.

across the sample set. For each warning, we count the number of

sampled configurations in which it appears. This quantity gives us

an idea about how łrarež a warning is, i.e., how likely we are to find

this warning when checking a single configuration. Examining the

distribution of configuration counts across all warnings gives us

insight about how variability warnings are distributed. For these

experiments, we only consider variability warnings, since generic

warnings are assumed to appear in all configurations and RQ1

already shows how common such warnings are.

Figure 5 shows box-and-whisker plots of the distribution of vari-

ability warnings across the sampled configurations. Each chart

represents the distributions for one static analysis tool by type of

warning. Each box-and-whisker is an aggregate of the variability

warnings from all three programs, except for CBMC in Figure 5a,

which summarizes axTLS and Toybox results due to the failure

to analyze every sample configuration of BusyBox. In Figure 5,

the median number of configurations of most warning types is

between 400 and 600. The three outliers are NaN from CBMC (355),

Memory_Error from Clang (379), and API from Clang (651). In or-

der to determine whether there were actual statically significant

differences between the different warning types or if the differ-

ent types were independent, we performed ANOVA tests on each

tool’s output. In all cases except Cppcheck, ANOVA rejects the null

hypothesis of independence at α = 0.01.

We additionally observe wide distributions of the number of

configurations in most warning types. This means that some warn-

ings were detected in either a small or a large subset of sampled

configurations. For example, Infer discovered 9 Toybox warnings

in 976 configurations. We found that these variability warnings

exist in the same Toybox file (i.e., ps.c). This file is included in

compilation if any one of five configuration options is turned on;

specifically, these options are PS, PKILL, PGREP, IOTOP, and TOP.

This disjunctive constraint is satisfied in most configurations in our

sample, resulting in the detection of these variability warnings.

On the other hand, the Toybox warning that was detected by

Cppcheck with least number of configurations (i.e., 98) appears

in the file axhttpd.c. Upon checking the feature interaction as-

sociated with this warning, we found that it is a conjunction of 5

configuration options, which explains why it can only be detected

in a few configurations. In another example, one Toybox warning

was only discovered by Cppcheck in 4 configurations. This warning

is emitted by the tool only if the configuration option LSM_NONE

is turned on. In our sample, only 4 configurations turned on this

option because Toybox’s build system only allows this option to

be turned on when many other options are turned off. The above

observations illustrate that the detection of variability warnings

from a sample is affected by the build system implementation of

the target program, as well as the generation of samples. Overall,

Figure 5 has shown that while the majority of variability warnings

are detected in many configurations in our sample, some can only be

detected in a few due to the configurability of the target software.

Figure 6 shows the subset of configurations in our sample that

may produce the same results, for each tool and program combina-

tion. The number above each column shows the size of the subset,
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and the different colors/patterns in each column indicate differ-

ent configurations. We computed this subset by greedily searching

for the configuration that adds the most warnings. Algorithm 1

describes this process in detail.

Data: C is the set of configurations,W is the set of warnings, S is a

subset of C

Result: S

C
′ := C ,W ′ :=W , S := ∅;

LetW ′
c denote the set of warningsw ∈W ′ that are in configuration

c ;

whileW ′ is not empty do

find c ∈ C′ that produces the most w ∈W ′;

S := S ∪ {c };W ′ :=W ′ −W ′
c ;C

′ := C′ − c ;

end

Algorithm 1: Find a subset of configurations with all warnings.

In Figure 6, at most 29 configurations (for CBMC-BusyBox) were

needed to cover all warnings that were found by our samples. It only

required 4 configurations to detect all Toybox warnings by Clang.

On average, the subsets cover 92% and 80% of values of a single

option and of the 2-way combinations of options in the configura-

tion sample, respectively. This result suggests that running static

bug detectors on a small, well-constructed set of configurations may

reveal many variability warnings. We regard this as an important

future research direction.

For developers deciding between variability-aware or variability-

oblivious analyses, these results indicate a tradeoff. For situations

where software reliability is less of a priority than faster bug detec-

tion, using a variability-oblivious analysis may be sufficient, albeit,

finding the right set of configurations to test may be difficult. On

the other hand, for critical software, finding every potential defect

requires using variability-aware analyses to guarantee the safety

of every configuration.

4.3 RQ3: How Do Our Results Compare to
Checking a Maximum or Minimum
Configuration?

To further understand how the variability warnings can be detected

and affected by the choice of configurations we compare the warn-

ings of sample configurations to that of minimum, default, and

maximum configurations.

Table 4 shows the results of our comparison to maximum, mini-

mum, and default configurations. Toybox and BusyBox ship with

a default, but not axTLS. Turning on more configuration options

typically means more code, therefore a configuration with more op-

tions should then result inmorewarnings.While the allyesconfig

command for these codebases’ build systems will generate a maxi-

mum configuration, due to the system dependencies, none of the

allyesconfigs yield buildable configurations on which to run bug

finders successfully. Instead, we generated a łmaximum" configu-

ration for each target program using the optimization algorithm

presented by Oh et al. [31]. Similarly, to test the tools’ capabilities

in discovering warnings when most options are set to false, we

generated a łminimum" configuration using the same optimization

algorithm. We made the following observations from Table 4.

Table 4: Comparisons to warnings detected by maximum,

default and minimum configurations. Each cell shows the

number of configurations that are shared by the configura-

tion and our results, only in the single configuration, or only

in our sampled results, i.e., łshared · single · samplež. *No

warnings were found by Cppcheck on axTLS. †Infer did not

run on BusyBox.

cbmc clang infer cppcheck

axTLS

Maximum 1.9k · 0 · 82 10 · 0 · 3 42 · 0 · 4 *

Minimum 1.6k · 382 · 434 5 · 1 · 8 25 · 8 · 19 *

Toybox

Maximum 4.2k · 0 · 29 48 · 0 · 8 110 · 0 · 2 14 · 0 · 6

Minimum 757 · 0 · 3.5k 10 · 0 · 46 31 · 0 · 78 4 · 2 · 16

Default 4.2k · 0 · 69 52 · 0 · 4 110 · 0 · 2 16 · 0 · 4

BusyBox

Maximum 26k · 128 · 2.7k 256 · 3 · 68 † 82 · 9 · 43

Minimum 3.1k · 3 · 26k 21 · 2 · 303 † 4 · 5 · 117

Default 3.1k · 3 · 26k 249 · 2 · 75 † 83 · 11 · 42

First, maximum configurations often produced a large portion of

warnings discovered by running the tool on our sample, but never

discovered all warnings. More than 90% of CBMC and Infer warnings

were found by maximum configurations. In other cases, maximum

configurations discovered 66% (Cppcheck-BusyBox) to 86% (Clang-

Toybox) of all warnings produced by our sample.

Second, minimum configurations discovered fewer warnings, but

also discovered some new warnings. It is expected that with most

configuration options turned off, minimum configurations would

miss most warnings found by our study samples. For example,

only 21 out of 324 and 4 out of 121 BusyBox warnings were found

by Clang and Cppcheck running on the minimum configuration,

respectively. Note, however, that minimum configurations also

discovered several warnings that were never found in our samples,

for example, 382 new axTLS warnings when using CBMC. Upon

inspection, we believe one cause is that a static bug detector may

consider certain code feasible only when most/all configuration

options are set to false. Another reason is that some options were

never enabled in our configuration samples, due to the constraints

we enforce.

Third, many warnings may be missed if tools are only run on de-

fault configurations. Almost 90% of BusyBox warnings from CBMC

would have been missed if only the default configuration was used.

Similarly, about half of the axTLS warnings from Clang and Infer

would have been missed.

The above results suggest that it is not sufficient to only test and

analyze the default (or another single) configuration of the target soft-

ware, while it may be worthwhile to include the special configuration

(e.g., minimum) as part of the test.

5 BUG DATASET

Using the methodology described in Section 3.5, we manually clas-

sified all Clang, Infer, and Cppcheck warnings except for Clang’s

warnings on BusyBox and Uninitialized_Val warnings emitted by

Cppcheck on BusyBox. All warning types except Dead_Store7 were

7While a Dead_Store can be a symptom of another bug, the confirmation of Dead_Store
warnings often results in optimization instead of bug fixes in the code.
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Table 5: Manually inspected true positive bugs from our

study of variability warnings. *No warnings were found for

Cppcheck. †Infer did not run on BusyBox. ‡We did not in-

vestigate Clang BusyBox warnings.

clang infer cppcheck

axTLS

Variability bug 6 11 *

Generic bug 1 18 *

Toybox

Variability bug 16 6 9

Generic bug 1 5 0

BusyBox

Variability bug † ‡ 2

Generic bug † ‡ 2

Figure 7: The distribution of number of configurations re-

porting variability bugs.

inspected. Because we confirm each true bug and its associated

feature interactions as a team to gain more confidence on the re-

sults, manual classification of all warnings were prohibitive for

the thousands of CBMC results, the 324 Clang on BusyBox warn-

ings, and the 117 Uninitialized_Val warnings raised by Cppcheck

on BusyBox. Nevertheless, we have generated a true bug dataset

consisting of 77 previously-unpublished bugs from recent versions

of axTLS, Toybox, and BusyBox (Table 5). Among them, 52 are

variability bugs. This bug dataset also covers a wide range of bug

types: Null_Deref (32), Logic_Error (14), Uninitialized_Val (7), Secu-

rity (6), Memory_Error (6), Resource_Leak (5), Memory_Leak (4),

Array_Bounds (2), and Undef_Behavior (1). We now study the bug

characteristics to provide more insights on this dataset.

Figure 7 shows the distribution of the number of configurations

on which variability bugs were discovered. The majority of vari-

ability bugs were detected by about half of the configurations in

our samples, consistent with our observation from Figure 5. Figure

8 shows the number of configuration options affecting the bugs. Re-

call that these options were initially automatically identified, then

manually confirmed (Section 3.6). In our dataset, 40 variability bugs

are associated with only 1 configuration option. Among these bugs,

30 are defined in Makefiles, and 10 are defined with C preprocessor

directives in the source code. Additionally, we see 9 bugs associated

with some kind of dependency. Figure 9 shows an example of a

configuration option, AXHTTPD, in a Makefile, which governs the in-

clusion of a file, axhttpd.c, in which we found four bugs. Figure 10

Figure 8: Feature interactions of variability bugs.

ifndef CONFIG_AXHTTPD

web_server:

else

web_server :: $(TARGET)

Figure 9: An example of variability in an axTLS Makefile.

shows another configuration option, HTTP_HAS_AUTHORIZATION,

which depends on AXHTTPD (i.e., HTTP_HAS_AUTHORIZATION can

only be enabled if AXHTTPD is enabled). HTTP_HAS_AUTHORIZATION

includes the file htpasswd.c, in which we found two bugs.

menu "Axhttpd Configuration"

depends on CONFIG_AXHTTPD

...

config CONFIG_HTTP_HAS_AUTHORIZATION

bool "Enable authorization"

default y

...

endmenu

Figure 10: An example of dependencies between configura-

tion options in an axTLS Kconfig file. All options defined in

this menu depend on CONFIG_AXHTTP.

The other 12 bugs are associated with 2 or 3 options. Figure 8

shows that regardless of the number of options, those options can

come from either preprocessor directives or from Makefiles. In

bugs that are caused by the interaction of 2 or 3 options, those op-

tions can originate from any combination of Makefile, preprocessor,

and dependency on another option. This result suggests that it is

important to consider the build system constraints, Makefile, and

preprocessors accurately to detect some variability bugs.

We believe this bug dataset can serve as a valuable benchmark for

future studies, both in testing variability-aware analyses and in test-

ing methods of finding variability bugs with variability-oblivious

analysis. We also believe that although we could only manually clas-

sify a small percent of the emitted warnings, this dataset supports

our methodology as being useful for finding variability bugs.

6 THREATS TO VALIDITY

We identify two threats to the validity of our conclusions. First, our

empirical study used four static bug detectors and three open source

C programs. Although these are real-world tools and programs,
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they may not be representative of bug detectors and configurable

C software as a whole. Second, there are approximations in our

approach that could lead to inaccurate results. Our deduplication

process may identify two warnings as equivalent even if they are

not, so long as they are on the same line and in the same source

code file. Our estimation of variability may incorrectly label some

variability warnings as generic warnings. Our manual classification

approachmay produce incorrect results. We increase the confidence

that the true bugs we report are true by confirming these as a group.

7 RELATED WORK

Our work is related to (i) recent studies on variability bugs and

dataset generation, (ii) research in finding variability bugs, and (iii)

methods that identify feature interactions and dependencies.

Variability Bug Study and Dataset. Abal et al. [1, 40] studied

previously reported (and fixed) variability bugs from the bug repos-

itories of Apache, Busybox, Marlin, and Linux software. They cre-

ated a database of 98 variability bugs, each of which has a feature

interaction and simplified code version. These bugs are of similar

types to the ones that we find. Bugs in this dataset span over a

decade of software development and ones that exist in old software

versions are challenging to be reproduced. Our work was inspired

by their effort to create a variability bug dataset. Instead, we focus

on previously-unpublished bugs in recent versions of the target

programs that can be found by static analysis tools to support the

evaluation of future analysis.

Other empirical work has been performed to study variability

bugs [2, 29, 41ś43]. For example, Medeiros et al. [41] investigated C

programs to find undeclared/unused variables and functions arising

from variability through global analysis using TypeChef [4]. They

found how those issues were introduced from revision histories,

and observed that those issues often took a long time to be fixed.

Proper sampling strategy is beneficial for early detection of those

issues. This work created a dataset consisting of 39 variability bugs.

Variability bug detection.Two important lines of research in find-

ing variability bugs are Combinatorial Interaction Testing (CIT) [16,

44ś46], and variability-aware static analysis. CIT aims to system-

atically sample configurations that satisfy certain coverage con-

ditions [17ś20]. Many adaptations of CIT have been proposed to

address the needs of different configuration spaces, e.g., accounting

for configuration constraints [47ś49], test case constraints [23, 24],

and cost aware-CIT [22]. Although CIT approaches have been

shown to be effective in finding variability bugs, CIT test suites

are not adequate to isolate and identify the specific interactions

of configuration options that lead to the detected variability bugs.

Using uniform random sampling, our approach focuses on studying

warnings and bugs to make observations that are representative of

the complete configuration space. Also, we integrate static analysis

tools to detect variability bugs.

Over the last decade, researchers have developed new variability-

aware static analysis techniques [7, 50ś56]. Rhein et al. [7] pre-

sented a framework that implemented multiple variability-aware

bug detectors. The results of these analyses were compared with

three sampling-based approaches, demonstrating the effectiveness

and efficiency of variability-aware analyses. Characteristics of the

warnings detected were also studied. Our study complements this

work to understand the types of variability warnings reported by

off-the-shelf static bug detectors. In addition, we have generated a

bug dataset via manual classification, potentially useful for evaluat-

ing this and other variability-aware analyses.

Understanding Feature Models of Existing Systems. Under-

standing the features and their dependencies from existing systems

is vital for understanding the variability. Researchers developed

methods and tools to identify feature interactions and dependen-

cies statically from source code [57ś59], make systems and con-

figuration specifications [35, 60ś62], or dynamically running the

systems [63ś66]. For example, Nguyen et al. [64] presented iGen

that dynamically discovers feature interactions with counter exam-

ple guided refinement. Our framework presents an algorithm for

automatically identifying features, and we also study the feature

interactions of the dataset. Several works in this line of research

(e.g., iGen) can potentially be integrated into the framework we

built as an alternative approach to identifying feature interactions.

8 CONCLUSIONS & FUTUREWORK

Variability bugs in configurable C software present a serious chal-

lenge for automatic bug detection through static analysis. State-of-

the-art variability-aware static analyses are promising, but there

is currently a gap between them and variability-oblivious tools.

Our work shows how to simulate variability-awareness with these

tools through our framework. We applied this framework to sev-

eral state-of-the-art, but variability-oblivious, bug detectors and

several highly-configurable codebases. With our results, we gain a

deeper understanding of how these tools would perform, showing

that variability warnings are very frequent, represent many kinds

of potential defects, and are distributed across the configuration

space. To support future research on highly-configurable code and

analyses, our bug dataset provides 77 true positives bugs that we

know can be found with static analysis tools. We hope this dataset

will be a valuable benchmark for future tool developers.

We believe that the findings presented in Sections 4 and 5 will

help drive future research into variability-aware analysis. One of

our most interesting findings was that given any set of warnings

obtained from 1,000 configurations, that same set of warnings could

be obtained from a small subset of those configurations. Finding

an algorithm to identify these configurations in advance would

improve variability-aware testing. Future analyses of the small

configuration sets presented in Section 4 may lead to insights on

how to carefully construct configuration sets that exhibit a wide

variety of variability warnings.

We have plans to continue to develop our toolchain and dataset

to gather further data on variability bugs. We intend to make our

framework pluggable to new bug detectors. We plan to continue

to improve our framework with better feature identification and

deduplication algorithms. Specifically, we would like to deduplicate

bugs across tools, allowing us to compare different tools. We also

plan to perform more classification of warnings to expand the bug

dataset. Leveraging testing tools like program slicers and tracers

can both speed up classification and enable classification of more

complex warnings.
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